相關習題
 0  231344  231352  231358  231362  231368  231370  231374  231380  231382  231388  231394  231398  231400  231404  231410  231412  231418  231422  231424  231428  231430  231434  231436  231438  231439  231440  231442  231443  231444  231446  231448  231452  231454  231458  231460  231464  231470  231472  231478  231482  231484  231488  231494  231500  231502  231508  231512  231514  231520  231524  231530  231538  266669 

科目: 來源: 題型:解答題

3.已知圓C:x2+y2+4x-28=0內(nèi)一點A(2,0),點M在圓C上運動,若MA的垂直平分線交CM于一點P(C為圓心).
(1)求點P的軌跡方程;
(2)在點P的軌跡上是否存在點N(2,-1)對稱的兩點?若存在,請求出對稱點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

2.設數(shù)列{an},a2=$\frac{a}{3}$(a為非零常數(shù)),an+1=$\frac{{a}_{n}}{3}$+$\frac{a}{{3}^{n}}$,數(shù)列{bn},bn=3n-1an,Sn是數(shù)列{bn}的前n項的和.
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)是否存在實數(shù)a、b,使得對任意正整數(shù)t,數(shù)列{bn}中滿足bn+b≤t的最大項恰是第3t-2項?若存在,分別求出a與b的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若兩個相似三角形的周長比為3:4,則它們的三角形面積比是9:16.

查看答案和解析>>

科目: 來源: 題型:解答題

20.各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且6Sn=(an+1)(an+2).
(I)求{an}的通項公式;
(Ⅱ)若$\frac{10}{3}$($\frac{1}{{a}_{1}{a}_{2}}$$+\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n-1}{a}_{n}}$)≤a1<2,求n的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.設函數(shù)f(x)=|x+a|-|x+1|.
(Ⅰ)當a=-$\frac{1}{2}$時,解不等式:f(x)≤2a;
(Ⅱ)若對任意實數(shù)x,f(x)≤2a都成立,求實數(shù)a的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=ax3+x2-ax,其中a∈R且a≠0.
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)求函數(shù)g(x)=$\frac{f(x)}{x}-\frac{3}{a}$lnx的單調區(qū)間;
(Ⅲ)若存在a∈(-∞,-1],使函數(shù)h(x)=f(x)+f′(x),x∈[-1,b](b>-1)在x=-1處取得最小值,試求b的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-a|(a∈R).
(1)當a=1時,解不等式f(x)<|2x-1|-1;
(2)當x∈(-2,1)時,|x-1|>|2x-a-1|-f(x),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=(3x+1)ex+1+kx(k≥-2),若存在唯一整數(shù)m,使f(m)≤0,則實數(shù)k的取值范圍是( 。
A.($\frac{5}{e}$,2]B.[$\frac{5}{2e}$,2)C.(-$\frac{1}{2}$,-$\frac{5}{2e}$]D.[-2,-$\frac{5}{2e}$)

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知|A-a|<$\frac{?}{2}$,|B-b|<$\frac{?}{2}$,求證:
(1)|(A+B)-(a+b)|<ε;
(2)|(A-B)-(a-b)|<ε.

查看答案和解析>>

科目: 來源: 題型:解答題

14.用長為16cm,寬為10cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正方形,然后把四周的四個小矩形向上翻轉90°角,再焊接而成(如圖),問該容器的高x為多少時,容器的容積V(x)最大?最大容積是多少?

查看答案和解析>>

同步練習冊答案