相關(guān)習(xí)題
 0  231723  231731  231737  231741  231747  231749  231753  231759  231761  231767  231773  231777  231779  231783  231789  231791  231797  231801  231803  231807  231809  231813  231815  231817  231818  231819  231821  231822  231823  231825  231827  231831  231833  231837  231839  231843  231849  231851  231857  231861  231863  231867  231873  231879  231881  231887  231891  231893  231899  231903  231909  231917  266669 

科目: 來源: 題型:解答題

14.從巍山縣廟街鎮(zhèn)一所小學(xué)的甲、乙兩個(gè)班級(jí)分別隨機(jī)抽取4名學(xué)生的年齡制作出如右所示莖葉圖,乙紀(jì)錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),以X表示.
(Ⅰ)若這8個(gè)學(xué)生的平均年齡是9.5歲,求X;
(Ⅱ)有關(guān)專家的研究結(jié)果顯示,兒童身高b(cm)與年齡a(歲)有關(guān)系:b=7a+70.在(Ⅰ)的條件下,試分別估計(jì)甲、乙兩個(gè)班級(jí)學(xué)生的身高;
(Ⅲ)估計(jì)哪個(gè)班學(xué)生的身高更整齊,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知A(-2,0)、B(2,0),P(2,4),動(dòng)點(diǎn)滿足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,M的軌跡為曲線C.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)過P作曲線C的切線,求切線的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

12.如表是關(guān)于出生男嬰與女嬰調(diào)查的列聯(lián)表,那么A=53,B=35,C=100,D=82.
晚上白天總計(jì)
男嬰45B
女嬰A47C
總計(jì)98D180

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)平面內(nèi)有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點(diǎn),若用f(n)表示這n條直線交點(diǎn)的個(gè)數(shù),則f(8)的值為( 。
A.30B.32C.27D.29

查看答案和解析>>

科目: 來源: 題型:選擇題

10.給出如圖的程序框圖,程序輸出的結(jié)果是(  )
A.55B.56C.72D.46

查看答案和解析>>

科目: 來源: 題型:解答題

9.設(shè)f(x)=alnx+bx2+x在x1=1和x2=2處都取得極值,試求a與b的值,并指出這時(shí)f(x)在x1與x2處是取得極大值還是極小值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{(x+1)(x+a)}{x}$為奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間(0,+∞)上是增函數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

7.記函數(shù)f(x)=lg(x2-1)的定義域?yàn)锳,g(x)=$\sqrt{(x-a-1)(2a-x)}$(其中a<1)的定義域?yàn)锽.
(1)求A;
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.計(jì)算下列各式的值:
(1)8${\;}^{\frac{2}{3}$+(0.01)${\;}^{-\frac{1}{2}}}$+($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$;
(2)21g5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目: 來源: 題型:解答題

5.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=$\frac{1}{2}$,過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(1)求橢圓E的方程;
(2)若直線AB的斜率為$\sqrt{3}$,求△ABF2的面積.

查看答案和解析>>

同步練習(xí)冊答案