相關(guān)習(xí)題
 0  231889  231897  231903  231907  231913  231915  231919  231925  231927  231933  231939  231943  231945  231949  231955  231957  231963  231967  231969  231973  231975  231979  231981  231983  231984  231985  231987  231988  231989  231991  231993  231997  231999  232003  232005  232009  232015  232017  232023  232027  232029  232033  232039  232045  232047  232053  232057  232059  232065  232069  232075  232083  266669 

科目: 來源: 題型:填空題

1.在△ABC中,$sinA=\frac{1}{3}$,$cosB=\frac{{\sqrt{3}}}{3}$,a=1,則b=$\sqrt{6}$.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖1在Rt△ABC中,∠ABC=90°,D、E分別為線段AB、AC的中點,AB=4,BC=2$\sqrt{2}$.以DE為折痕,將Rt△ADE折起到圖2的位置,使平面A′DE⊥平面DBCE,連接A′C,′B,設(shè)F是線段A′C上的動點,滿足$\overrightarrow{CF}$=λ$\overrightarrow{CA′}$.
(Ⅰ)證明:平面FBE⊥平面A′DC;
(Ⅱ)若二面角F-BE-C的大小為45°,求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的圖象經(jīng)過點$({0,\frac{1}{2}})$,且相鄰兩條對稱軸的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是A,B,C的對邊,若$f({\frac{A}{2}})-cosA=\frac{1}{2}$,bc=1,b+c=3,求a的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,且焦點到漸近線的距離為$\sqrt{3}$,則雙曲線的方程為(  )
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐P-ABCD的高為(  )
A.2B.3C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知y=f(x)是定義在[-6,6]上的奇函數(shù),它在[0,3]上是一次函數(shù),在[3,6]上是二次函數(shù),當x∈[3,6]時,f(x)≤f(5)=3,又f(6)=2,則f(x)=$\left\{\begin{array}{l}{-(x-5)^{2}+3,3≤x≤6}\\{-\frac{1}{3}x,-3<x<3}\\{(x+5)^{2}-3,-6≤x≤-3}\end{array}\right.$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)f(x)=3x3+2x,且$a=f(ln\frac{3}{2}),\;b=f({log_2}\frac{1}{3}),\;c=f({2^{0.3}})$,則( 。
A.c>a>bB.a>c>bC.a>b>cD.b>a>c

查看答案和解析>>

科目: 來源: 題型:填空題

14.如圖為一個幾何體的三視圖,正視圖和側(cè)視圖均為矩形,俯視圖中曲線部分為半圓,尺寸如圖,則該幾何體的體積為2+π.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點分別為F1、F2,離心率e=$\frac{\sqrt{2}}{2}$,與雙曲線${x^2}-{y^2}=\frac{1}{2}$有相同的焦點.
(I)求橢圓C的標準方程;
(II)過點F1的直線l與該橢圓C交于M、N兩點,且|$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}}$N|=$\frac{2\sqrt{26}}{3}$,求直線l的方程.
(Ⅲ)是否存在圓心在原點的圓,使得該圓的任一條切線與橢圓C有兩個交點A、B,且OA⊥OB?若存在,寫出該圓的方程,否則,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.下列說法中正確的個數(shù)是( 。
(1)任何一個算法都包含順序結(jié)構(gòu);
(2)條件分支結(jié)構(gòu)中一定包含循環(huán)結(jié)構(gòu);
(3)循環(huán)結(jié)構(gòu)中一定包含條件分支結(jié)構(gòu).
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案