相關(guān)習題
 0  232067  232075  232081  232085  232091  232093  232097  232103  232105  232111  232117  232121  232123  232127  232133  232135  232141  232145  232147  232151  232153  232157  232159  232161  232162  232163  232165  232166  232167  232169  232171  232175  232177  232181  232183  232187  232193  232195  232201  232205  232207  232211  232217  232223  232225  232231  232235  232237  232243  232247  232253  232261  266669 

科目: 來源: 題型:選擇題

17.下列函數(shù)中,可以是單調(diào)遞增函數(shù)的為(  )
A.f(x)=(x-a)|x|,a≠0B.f(x)=x2+ax+1,a∈RC.f(x)=log2(ax-1),a∈RD.f(x)=ax2+cosx,a∈R

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1}{1+i}$-$\frac{1}{1-i}$=$\frac{1+z}{1-z}$,則|z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DE的中點.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)求平面BCF與平面BEF夾角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在高三的全體1000名學生中隨機抽取了若干名學生的體檢表,并得到 如直方圖:
(Ⅰ)若直方圖中前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(Ⅱ)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關(guān)系,對年紀名次在1~50名和951~1000名的學生進行了調(diào)查,得到如圖表中數(shù)據(jù):
1-50951-1000
近視4132
不近視918
根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關(guān)系?
(Ⅲ)在(Ⅱ)中調(diào)查的100名學生中,在不近視的學生中按照成績是否在前50名分層抽樣抽取了9人,進一步調(diào)查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數(shù)為X,求X的分布列和數(shù)學期望.
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.△ABC中,A=$\frac{π}{6}$,b=2,以下命題中正確的序號是①②③.
①若a=1,則c有一解;                  
②若a=$\sqrt{3}$,則c有兩解;
③若a=$\frac{11}{6}$,則c有兩解;                
④若a=3,則c有兩解.

查看答案和解析>>

科目: 來源: 題型:填空題

12.函數(shù)f(x)=1-cos($\frac{π}{2}$-x)-cos2x的最大值為3,最小值為-$\frac{1}{8}$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知Sn為等差數(shù)列{an}的前n項的和,S1>0,且S4>S6,則S10為正數(shù).(填“正數(shù)”、“負數(shù)”或“零”)

查看答案和解析>>

科目: 來源: 題型:填空題

10.函數(shù)f(x)=sin(x+$\frac{π}{6}$)+cos2$\frac{x}{2}$的振幅為$\frac{\sqrt{7}}{2}$,最小正周期為2π.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,且Sn+2=2an(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2log2an,數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項和為Tn,證明:Tn<$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2tx+1,在區(qū)間[2,5]上單調(diào)且有最大值8.求實數(shù)t的值.

查看答案和解析>>

同步練習冊答案