相關(guān)習題
 0  232530  232538  232544  232548  232554  232556  232560  232566  232568  232574  232580  232584  232586  232590  232596  232598  232604  232608  232610  232614  232616  232620  232622  232624  232625  232626  232628  232629  232630  232632  232634  232638  232640  232644  232646  232650  232656  232658  232664  232668  232670  232674  232680  232686  232688  232694  232698  232700  232706  232710  232716  232724  266669 

科目: 來源: 題型:解答題

19.在平面直角坐標系xOy中,O為坐標原點,以O為圓心的圓與直線$\sqrt{2}x+y-3\sqrt{3}=0$相切.
(1)求圓O的方程;
(2)直線l:y=kx+4與圓O交于A,B兩點,在圓O上是否存在一點M,使得△OAM與△OBM都為等邊三角形?若存在,求出此時直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)$y=\left\{\begin{array}{l}{(x+2)^2},x<0\\ 4,x=0\\{(x-2)^2},x>0\end{array}\right.$,請畫出一種程序框圖,要求輸入自變量x的值,輸出函數(shù)值y.

查看答案和解析>>

科目: 來源: 題型:填空題

17.雙曲線${x^2}-\frac{y^2}{m^2}=1$與橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的焦點相同,則雙曲線的離心率是2.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知直線l:3x+4y-12=0與x軸、y軸分別相交于A、B.
(1)求過點P(1,2)且在x軸、y軸上截距均相等的直線的方程;
(2)求與直線l、x軸、y軸都相切的圓的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.以下命題正確的個數(shù)為( 。
①若“p且q”與“?p或q”均為假命題,則p真q假;
②“a>0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(-∞,0)上單調(diào)遞減”的充要條件;
③函數(shù)f(x)=3ax+1-2a在(-1,1)上存在x0,使得f(x0)=0,則a的取值范圍是a<-1或$a>\frac{1}{5}$;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則m<10.
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已橢圓方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$,則該橢圓的焦距為(  )
A.10B.8C.6D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

13.若α是銳角,且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,則sinα的值等于(  )
A.$\frac{\sqrt{6}+3}{6}$B.-$\frac{\sqrt{6}-3}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{6}-1}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知圓O:x2+y2=1,點P(x0,y0)在直線l:x-y+2=0上.若在圓O上存在點Q,使∠OPQ=30°,則x0的取值范圍是( 。
A.[-2,0]B.[-1,2]C.$[{0,\sqrt{2}}]$D.$[{-1,\sqrt{3}}]$

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,}&{x≤-1}\\{{x}^{2},}&{-1<x<2}\\{2x,}&{x≥2}\end{array}\right.$
(1)若f(a)=3,求實數(shù)a的值.
(2)分別寫出函數(shù)f(x)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且a1=1,an=$\frac{2S_n^2}{{2{S_n}-1}}({n≥2})$.
(Ⅰ)求證:$\left\{{\frac{1}{S_n}}\right\}$是等差數(shù)列,并求Sn的表達式;
(Ⅱ)若存在正數(shù)k,使得對任意n∈N*,都有(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$,求k的最大值.

查看答案和解析>>

同步練習冊答案