相關(guān)習(xí)題
 0  232880  232888  232894  232898  232904  232906  232910  232916  232918  232924  232930  232934  232936  232940  232946  232948  232954  232958  232960  232964  232966  232970  232972  232974  232975  232976  232978  232979  232980  232982  232984  232988  232990  232994  232996  233000  233006  233008  233014  233018  233020  233024  233030  233036  233038  233044  233048  233050  233056  233060  233066  233074  266669 

科目: 來源: 題型:解答題

7.為了了解學(xué)生的數(shù)學(xué)復(fù)習(xí)情況,某校從第四次模擬考試成績(jī)中抽取一個(gè)樣本,將樣本分成5組,繪成頻率分布直方圖,圖中從左到右小矩形面積之比為2:5:10:5:3,最左邊一組的頻數(shù)為4,請(qǐng)結(jié)合直方圖解決下列問題.
(Ⅰ)求中位數(shù);
(Ⅱ)列出頻率分布表;
(Ⅲ)從樣本中成績(jī)?cè)赱120,140)內(nèi)的學(xué)生中任取2個(gè)學(xué)生,若成績(jī)?cè)赱120,130)內(nèi)獎(jiǎng)給1個(gè)小紅旗;若成績(jī)?cè)赱130,140)內(nèi)獎(jiǎng)給2個(gè)小紅旗.設(shè)X表示2個(gè)學(xué)生所得紅旗總數(shù),求X的分布列和E(X).

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$,
(1)判斷并用定義證明函數(shù)f(x)在區(qū)間(-1,+∞)上的單調(diào)性;
(2)求該函數(shù)在區(qū)間[1,4]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知A={1,3,$\sqrt{a}$},B={1,a},A∪B=A,則a=0或3.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\sqrt{2}sin(ωx+\frac{π}{4})(ω>0)$的最小正周期為π,下列四個(gè)判斷:
(1)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),f(x)的最小值為-1;
(2)函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{8}$對(duì)稱;
(3)函數(shù)f(x)的圖象可由$y=\sqrt{2}cos2x$的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度得到;
(4)函數(shù)f(x)在區(qū)間$[\frac{π}{8},\frac{3π}{8}]$上是減函數(shù).
以上正確判斷的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

3.某單位需制作一種長(zhǎng)方體包裝盒,有兩個(gè)要求:①容積為$\frac{512}{3}c{m^3}$.②包裝盒底面長(zhǎng)方形的長(zhǎng)是寬的2倍.請(qǐng)你設(shè)計(jì)包裝盒的長(zhǎng)、寬、高,使包裝盒用料最省,并求出最小用料面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知$sin(x-\frac{3π}{7})=\frac{4}{5}$,則$cos(\frac{13π}{14}-x)$=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.執(zhí)行下面的程序框圖,如果輸入的t∈[-2,4],則輸出的s屬于(  )
A.[-4,6]B.[-3,6]C.[-6,4]D.[-6,3]

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知關(guān)于x的不等式lnx-$\frac{1}{2}$ax2+(1-a)x+1≤b恒成立;則ab的最小值為( 。
A.1+$\frac{2}{e}$B.$\frac{1}{2}$+$\frac{2}{e}$C.1+$\frac{1}{e}$D.$\frac{1}{2}$+$\frac{1}{e}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.$\sqrt{9-{x^2}}$=-x+m方程的解恰有1個(gè),則m的范圍為$\left\{{m|-3≤m<3或m=3\sqrt{2}}\right\}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.拋物線y2=2px(p>0)的焦點(diǎn)是F,弦AB過點(diǎn)F,且|AB|=8,若AB的傾斜角是α,且cosα是|x-1|+|x-$\frac{1}{2}$|的最小值,則p的值為( 。
A.1B.6C.4D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案