相關(guān)習題
 0  233671  233679  233685  233689  233695  233697  233701  233707  233709  233715  233721  233725  233727  233731  233737  233739  233745  233749  233751  233755  233757  233761  233763  233765  233766  233767  233769  233770  233771  233773  233775  233779  233781  233785  233787  233791  233797  233799  233805  233809  233811  233815  233821  233827  233829  233835  233839  233841  233847  233851  233857  233865  266669 

科目: 來源: 題型:選擇題

18.按圖所示的程序框圖,若輸入a=110011,則輸出的b=( 。
A.45B.47C.49D.51

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知直線l1:x-2y-1=0,直線l2:ax+by-1=0,其中a,b∈{1,2,3,4,5,6},則l1⊥l2的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{12}$C.$\frac{1}{18}$D.$\frac{5}{36}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)-1.
(1)求函數(shù)的對稱軸和對稱中心;
(2)求函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(3)若x∈(-$\frac{π}{4}$,$\frac{π}{3}$),求函數(shù)的值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當x∈[-3,-1]時,f(x)=-(x+2)2,當x∈[-1,3)時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=( 。
A.336B.355C.1676D.2015

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若定義在R上的偶函數(shù)y=f(x)滿足f(x+2)=f(x),且當x∈[0,1]時,f(x)=x,函數(shù)g(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{x}(x≤0)}\end{array}\right.$,則?x∈[-4,4],方程f(x)=g(x)不同解的個數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目: 來源: 題型:解答題

13.函數(shù)f(x)=x2-2ax+1,其中a<1,在閉區(qū)間[-1,1]上的最小值記為g(a).
(1)當a=$\frac{1}{2}$時,求g(a)的值;
(2)求g(a)的解析式.

查看答案和解析>>

科目: 來源: 題型:解答題

12.化簡求值:
(1)(2$\frac{7}{9}$)0.5+0.1-20+$\frac{1}{3}$;
(2)(xy2•x${\;}^{\frac{1}{2}}$•y${\;}^{-\frac{1}{2}}$)${\;}^{\frac{1}{3}}$•(xy)${\;}^{\frac{1}{2}}$其中x>0,y>0.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x,x≥2}\\{{a}^{x}-4,x<2}\end{array}\right.$滿足對任意的實數(shù)x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則實數(shù)a的取值范圍為( 。
A.(1,2]B.($\frac{13}{4}$,2]C.(1,3]D.($\frac{13}{4}$,3]

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)命題p:?x0∈R,x02+2ax0-2a=0,命題q:?x∈R,ax2+4x+a>-2x2+1,如果命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.求適合下列條件的橢圓的標準方程.
(1)長軸在x軸上,長軸的長等于12,離心率等于$\frac{2}{3}$;
(2)長軸長是短軸長的2倍,且橢圓過點(-2,-4).

查看答案和解析>>

同步練習冊答案