相關(guān)習(xí)題
 0  233886  233894  233900  233904  233910  233912  233916  233922  233924  233930  233936  233940  233942  233946  233952  233954  233960  233964  233966  233970  233972  233976  233978  233980  233981  233982  233984  233985  233986  233988  233990  233994  233996  234000  234002  234006  234012  234014  234020  234024  234026  234030  234036  234042  234044  234050  234054  234056  234062  234066  234072  234080  266669 

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=ex-ax-1.
(1)若函數(shù)f(x)在x=ln2處取極值,求a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知命題p:函數(shù)f(x)=lg(x2+ax+1)的定義域為R,命題q:函數(shù)g(x)=lg(x2+ax)在[1,+∞)上單調(diào)遞增,若p∧q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=m-|x-1|-|x+1|.
(1)當(dāng)x∈(1,+∞)時,求不等式f(x)>0的解集;
(2)若二次函數(shù)y=x2+2x+3與函數(shù)k的圖象恒有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在長方體ABCD-A1B1C1D1中,AD=DD1=1,DC=2,E為AB上一點.
(Ⅰ)求證:D1E⊥A1D;
(Ⅱ)若E為AB中點時,求AD與平面D1EC所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,點M、N、E分別為A1B、B1C1、A1B1上的中點.
(Ⅰ)求證:平面MNE∥平面ACC1A1;
(Ⅱ)若AB=AC=AA1=2,求證:平面BMC⊥平面AMC.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在正方體ABCD-A1B1C1D1中,棱長為2,M、N、E分別為B1C1、C1C、D1C1的中點.
(Ⅰ)求證:A1B∥平面EMN;
(Ⅱ)求A1B與MN所成的角.

查看答案和解析>>

科目: 來源: 題型:填空題

11.將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列五個命題:
①△DBC是等邊三角形;  
②AC⊥BD;  
③三棱錐D-ABC的體積是$\frac{{\sqrt{2}}}{6}$;
④三棱錐D-ABC的表面積是$\sqrt{3}$;    
⑤直線AD與直線BC所成角是30°;
其中正確命題的序號是①②.(寫出所有正確命題的序號).

查看答案和解析>>

科目: 來源: 題型:選擇題

10.下列說法正確的個數(shù)為( 。 
①若$\vec a∥\vec b$,則一定存在實數(shù)λ,使$\vec a=λ\vec b$;
②已知空間中任意一點O和不共線的三點A,B,C,若滿足2$\overrightarrow{OP}=x\overrightarrow{OA}-y\overrightarrow{OB}+z\overrightarrow{OC}$中x-y+z=2,則P與A,B,C共面;
③如圖1,在平行六面體中,以A為端點的三條棱長都為1,且彼此的夾角都為60°,那么AC1=$\sqrt{3}$;
④如圖2,A∈α,B∈β,AC⊥l,BD⊥l,若AC=BD=CD=1,AB=2,則α,β所成二面角為60°.
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目: 來源: 題型:解答題

9.橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸為4$\sqrt{3}$,焦距為4$\sqrt{2}$.
(Ⅰ) 求橢圓G的方程;
(Ⅱ) 若斜率為1的直線l與橢圓G交于A、B兩點,且點P(-3,2)在線段AB的垂直平分線上,求△PAB的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如下圖,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1
中點,且CF⊥AB,AC=BC.
(Ⅰ)求證:CF∥平面AEB1;
(Ⅱ)求證:平面AEB1⊥平面ABB1A1

查看答案和解析>>

同步練習(xí)冊答案