相關(guān)習(xí)題
 0  233965  233973  233979  233983  233989  233991  233995  234001  234003  234009  234015  234019  234021  234025  234031  234033  234039  234043  234045  234049  234051  234055  234057  234059  234060  234061  234063  234064  234065  234067  234069  234073  234075  234079  234081  234085  234091  234093  234099  234103  234105  234109  234115  234121  234123  234129  234133  234135  234141  234145  234151  234159  266669 

科目: 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A=$\frac{π}{3}$,P為△ABC的外心,若$\overrightarrow{AP}$=λ1$\overrightarrow{AB}$+2λ2$\overrightarrow{AC}$,其中λ1與λ2為實(shí)數(shù),則λ12的最大值為( 。
A.$\frac{1}{2}$B.1-$\frac{\sqrt{2}}{3}$C.$\frac{3}{4}$D.1+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

11.函數(shù)f(x)=-x2+(3-2m)x+2+m(0<m≤1).
(Ⅰ)若x∈[0,m],證明:f(x)≤$\frac{10}{3}$;
(Ⅱ)求|f(x)|在[-1,1]上的最大值g(m).

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知tanα=2.
(1)求sinα;
(2)$\frac{2sinα-cosα}{2sinα+cosα}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.在△ABC中,已知BC=5$\sqrt{3}$,外接圓半徑為5,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{11}{2}$,則△ABC的周長(zhǎng)為(  )
A.11$\sqrt{3}$B.9$\sqrt{3}$C.7$\sqrt{3}$D.5$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{x+1}{2x-1}$,數(shù)列{an}的前n項(xiàng)和為Sn,且an=f($\frac{n}{2017}$),則S2017=(  )
A.1008B.1010C.$\frac{2019}{2}$D.2019

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知圓M:x2+y2-2x+a=0.
(1)若a=-8,過點(diǎn)P(4,5)作圓M的切線,求該切線方程;
(2)若AB為圓M的任意一條直徑,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-6(其中O為坐標(biāo)原點(diǎn)),求圓M的半徑.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知二次函數(shù)f(x)滿足f(1)=1,且f(x+1)-f(x)=4x-2.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=x2-4|x|+5.
(1)用分段函數(shù)的形式表示該函數(shù)并畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域以及函數(shù)的單調(diào)遞減區(qū)間(不用寫過程)

查看答案和解析>>

科目: 來源: 題型:填空題

4.在平面直角坐標(biāo)系xOy中,圓C1:x2+y2-4x-8y+19=0關(guān)于直線l:x+2y-a=0對(duì)稱,則實(shí)數(shù)a=10.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.關(guān)于x的不等式ax2+bx+2>0的解集為(-$\frac{1}{2}$,$\frac{1}{3}$),則不等式$\frac{a(x-1)}{x+b}$≥6的解為( 。
A.$(\frac{4}{3},2)$B.$[\frac{4}{3},2)$C.$(-∞,\frac{4}{3})∪(2,+∞)$D.$(-∞,\frac{4}{3}]∪(2,+∞)$

查看答案和解析>>

同步練習(xí)冊(cè)答案