相關(guān)習(xí)題
 0  234270  234278  234284  234288  234294  234296  234300  234306  234308  234314  234320  234324  234326  234330  234336  234338  234344  234348  234350  234354  234356  234360  234362  234364  234365  234366  234368  234369  234370  234372  234374  234378  234380  234384  234386  234390  234396  234398  234404  234408  234410  234414  234420  234426  234428  234434  234438  234440  234446  234450  234456  234464  266669 

科目: 來(lái)源: 題型:選擇題

18.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=2,若x+2y≥a恒成立,則實(shí)數(shù)a的最大值為( 。
A.4B.2C.6D.8

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.如圖,矩形長(zhǎng)為6,為4,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在橢圓外的黃豆數(shù)為100顆,以此實(shí)驗(yàn)數(shù)據(jù)為依據(jù)可以估計(jì)出橢圓的面積為16.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知x>0,y>0,且x+2y=2,則2x+4y的最小值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{\frac{1}{2}{x}^{2}-3x+\frac{7}{2},x∈[1,+∞)}\end{array}\right.$,則關(guān)于x的方程f(x)+a=0(0<a<1)的所有根之和為1-2a

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.己知橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1$(m>n>0)的離心率e的值為$\frac{1}{2}$,右準(zhǔn)線方程為x=4.如圖所示,橢圓C左右頂點(diǎn)分別為A,B,過(guò)右焦點(diǎn)F的直線交橢圓C于M,N,直線AM,MB交于點(diǎn)P.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P(4,$3\sqrt{3}$),直線AN,BM的斜率分別為k1,k2,求$\frac{k_1}{k_2}$.
(3)求證點(diǎn)P在一條定直線上.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=n2+n.
(Ⅰ)求{an}的通項(xiàng)公式an;
(Ⅱ)若ak+1,a2k,a2k+3(k∈N*)恰好依次為等比數(shù)列{bn}的第一、第二、第三項(xiàng),求數(shù)列{$\frac{n}{_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足4nSn=(n+1)2an(n∈N*).a(chǎn)1=1
(Ⅰ)求an;
(Ⅱ)設(shè)bn=$\frac{n}{{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn$<\frac{7}{4}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)M是橢圓上一點(diǎn),三角形MF1F2的面積的最大值為$\sqrt{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)不經(jīng)過(guò)焦點(diǎn)F1的直線?:y=kx+m與橢圓交于不同兩點(diǎn)A、B,如果直線AF1,?,BF1的斜率依次成等差數(shù)列,求m的取值范圍?

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.若an>0,a1=2,且an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),則$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.已知{an}為等差數(shù)列,公差為d,且0<d<1,a5≠$\frac{kπ}{2}$(k∈Z),sin2a3+2sina5•cosa5=sin2a7,則數(shù)列{an}的公差為d的值為( 。
A.$\frac{π}{12}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案