相關(guān)習(xí)題
 0  234632  234640  234646  234650  234656  234658  234662  234668  234670  234676  234682  234686  234688  234692  234698  234700  234706  234710  234712  234716  234718  234722  234724  234726  234727  234728  234730  234731  234732  234734  234736  234740  234742  234746  234748  234752  234758  234760  234766  234770  234772  234776  234782  234788  234790  234796  234800  234802  234808  234812  234818  234826  266669 

科目: 來源: 題型:選擇題

15.函數(shù)$y=\sqrt{{{log}_{\frac{1}{2}}}(x-1)}$的定義域是(  )
A.(1,+∞)B.(1,2]C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)$a={(\frac{1}{2})^{0.7}}$,$b={(\frac{1}{2})^{0.8}}$,c=log30.7,則( 。
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目: 來源: 題型:選擇題

13.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F(xiàn)(c,0)為橢圓右焦點(diǎn),A為橢圓左頂點(diǎn),且b2=ac,P為橢圓上不同于A的點(diǎn),則使$\overrightarrow{PA}$•$\overrightarrow{PF}$=0的點(diǎn)P的個(gè)數(shù)為(  )
A.4B.3C.2D.0

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,過$P({0,\frac{2}})$的直線l與橢圓交于A,B兩點(diǎn),過Q(x0,0)(|x0|<a)的直線l'與橢圓交于M,N兩點(diǎn).
(1)當(dāng)l的斜率是k時(shí),用a,b,k表示出|PA|•|PB|的值;
(2)若直線l,l'的傾斜角互補(bǔ),是否存在實(shí)數(shù)x0,使$\frac{{|{PA}|•|{PB}|}}{{{{|{MN}|}^2}}}$為定值,若存在,求出該定值及x0,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.?dāng)?shù)列{an}中,Sn是{an}的前n項(xiàng)和且Sn=2n-an,
(1)求a1,an;
(2)若數(shù)列{bn}中,bn=n(2-n)(an-2),且對(duì)任意正整數(shù)n,都有${b_n}+t≤2{t^2}$,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大;   
(2)若$a=2\sqrt{3}$,求b+c的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知定義域?yàn)镽的函數(shù)f(x),對(duì)任意的x∈R,均有f(x+1)=f(x-1),且x∈(-1,1]時(shí),有f(x)=$\left\{{\begin{array}{l}{{x^2}+2,x∈[{0,1}]}\\{2-{x^2},x∈({-1,0})}\end{array}}$,則方程f(f(x))=3在區(qū)間[-3,3]上的所有實(shí)根之和為3.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知x,y∈R+,且滿足x+2y=2xy,那么3x+4y的最小值為5+2$\sqrt{6}$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.袋中有大小相同的3個(gè)紅球,2個(gè)白球,1個(gè)黑球.若不放回摸球,每次1球,摸取3次,則恰有兩次紅球的概率為$\frac{9}{20}$;若有放回摸球,每次1球,摸取3次,則摸到紅球次數(shù)的期望為$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π}),sinβ=\frac{{2\sqrt{2}}}{3},sin({α+β})=\frac{7}{9}$,則sinα的值為$\frac{1}{3}$;$tan\frac{α}{2}$的值為3-2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案