相關習題
 0  234697  234705  234711  234715  234721  234723  234727  234733  234735  234741  234747  234751  234753  234757  234763  234765  234771  234775  234777  234781  234783  234787  234789  234791  234792  234793  234795  234796  234797  234799  234801  234805  234807  234811  234813  234817  234823  234825  234831  234835  234837  234841  234847  234853  234855  234861  234865  234867  234873  234877  234883  234891  266669 

科目: 來源: 題型:填空題

10.已知長方形的對角線長為1,求長方體的最大的表面積,并求出這時長方體的各棱長.

查看答案和解析>>

科目: 來源: 題型:解答題

9.等比數(shù)列{an}的各項均為正數(shù),且a2=4,a42=4a1a5
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2a1+log2a2+log2a3+…+log2an,求數(shù)列{$\frac{1}{_{n}}$}的前n項和Sn,并證明:Sn<2.

查看答案和解析>>

科目: 來源: 題型:填空題

8.為得到函數(shù)y=sin(x+$\frac{π}{3}$)的圖象,可將函數(shù)y=sinx的圖象左移m個單位長度,則最小正數(shù)m是$\frac{π}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(1,-1),則$\overrightarrow{a}$•(2$\overrightarrow-\overrightarrow{a}$)=-24.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.如圖所示,AB=AC=1,DC=2BD,DE=EA,cos∠BAC=$\frac{1}{3}$,則BE=( 。
A.$\frac{59}{108}$B.$\frac{43}{108}$C.$\frac{\sqrt{177}}{18}$D.$\frac{\sqrt{129}}{18}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.函數(shù)f(x)=sinxcosx-$\frac{\sqrt{3}}{2}$cos2x,則f($\frac{π}{24}$)=(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=90°,PA⊥面ABCD,若PA=AB=BC=$\frac{1}{2}$AD.
(1)求證:CD⊥平面PAC;
(2)側棱PA上中點E,求證:BE∥平面PCD;
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=cos2x-sin2x+sin2x(x∈R).
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ) 若θ為銳角,且f(θ+$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,求sin2θ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.某用水量較大的企業(yè)為積極響應政府號召的“節(jié)約用水,我們共同的責任”的倡議,對生產(chǎn)設備進行技術改造,下表提供了該企業(yè)節(jié)約用水技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)用水y(噸)的幾組對照數(shù)據(jù):
x1234
y0.40.91.11.6
(1)若x,y之間是線性相關,請根據(jù)表中提供的數(shù)據(jù),求y關于x的線性回歸方程y=bx+a;
(2)已知該廠技術改造前100噸甲產(chǎn)品的生產(chǎn)用水為120噸,試根據(jù)(1)中求出的線性回歸方程,預測技術改造后生產(chǎn)100噸甲產(chǎn)品的用水量比技術改造前減少了多少噸?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

1.給出如圖所示的一組等式,則觀察圖中所展示的規(guī)律,可推出S20的值為( 。
A.4410B.4010C.4020D.4400

查看答案和解析>>

同步練習冊答案