相關(guān)習題
 0  234730  234738  234744  234748  234754  234756  234760  234766  234768  234774  234780  234784  234786  234790  234796  234798  234804  234808  234810  234814  234816  234820  234822  234824  234825  234826  234828  234829  234830  234832  234834  234838  234840  234844  234846  234850  234856  234858  234864  234868  234870  234874  234880  234886  234888  234894  234898  234900  234906  234910  234916  234924  266669 

科目: 來源: 題型:填空題

9.已知a=$\sqrt{3}-\sqrt{2}$,b=$\sqrt{6}-\sqrt{5}$,要比較a與b的大小,某同學想到了用斜率的方法,即將a,b改寫為a=$\frac{{\sqrt{3}-\sqrt{2}}}{3-2}$,b=$\frac{{\sqrt{6}-\sqrt{5}}}{6-5}$,通過畫圖,利用斜率發(fā)現(xiàn)了它們的大小關(guān)系.若c=$\root{3}{3}-\root{3}{2}$,d=$\root{3}{6}-\root{3}{5}$,則c> d.(在“<,=,>”中選一個填空)

查看答案和解析>>

科目: 來源: 題型:填空題

8.如圖,在四棱錐P-ABCD中,已知底面ABCD是矩形,AB=2,AD=a,PD⊥平面ABCD,若邊AB上有且只有一點M,使得PM⊥CM,則實數(shù)a=1.

查看答案和解析>>

科目: 來源: 題型:解答題

7.某高中畢業(yè)學年,在高校自主招生期間,把學生的平時成績按“百分制”折算,排出前100名學生,并對這100名學生按成績分組(從低到高依次分為第1組、第2組、第3組、第4組、第5組),其頻率分布直方圖如圖:現(xiàn)Q大學決定在第3、4、5組中用分層抽樣的方法抽取6名學生進行面試,且本次面試中有B、C、D三位考官.
(1)若規(guī)定至少獲得兩位考官的認可即面試成功,且面試結(jié)果相互獨立,已知甲同學已經(jīng)被抽中,并且通過這三位考官面試的概率依次為$\frac{1}{2},\frac{1}{3}$,$\frac{1}{4}$,求甲同學面試成功的概率;
(2)若Q大學決定在這6名學生中隨機抽取3名學生接受考官B的面試,設(shè)第4組中有ξ名學生被考官B面試,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖在正方體中
(1)求異面直線BC1與CD1所成的角;
(2)求直線D1B與底面ABCD所成角的正弦值;
(3)求二面角D1-AC-D大小的正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是邊長為2的正方形,PA=AD,F(xiàn)為PD的中點.
(1)求證:AF⊥平面PDC;
(2)求直線AC與平面PCD所成角的大。

查看答案和解析>>

科目: 來源: 題型:填空題

4.若a2-ab+b2=1,a,b是實數(shù),則a+b的最大值是2.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中點.N是AB的中點.
(1)證明:面PAD∥面MNC;
(2)證明:面PAD⊥面PCD;
(3)求PC與面PAD所成的角的正切;
(4)求二面角M-AC-B的正切.

查看答案和解析>>

科目: 來源: 題型:解答題

2.為了檢測某種水果的農(nóng)藥殘留,要求這種水果在進入市場前必須對每箱水果進行兩輪檢測,只有兩輪檢測都合格水果才能上市銷售,否則不能銷售.已知每箱這種水果第一輪檢測不合格的概率為$\frac{1}{9}$,第二輪檢測不合格的概率為$\frac{1}{10}$,每輪檢測結(jié)果只有“合格”、“不合格”兩種,且兩輪檢測是否合格相互之間沒有影響.
(Ⅰ)求每箱水果不能上市銷售的概率;
(Ⅱ)如果這種水果可以上市銷售,則每箱水果可獲利20元;如果這種水果不能上市銷售,則每箱水果虧損30元(即獲利為-30元).現(xiàn)有這種水果4箱,記這4箱水果獲利的金額為X元,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

1.某公司計劃在一次聯(lián)誼會中設(shè)一項抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球.活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎;獎金300元,三球號碼都連號為二等獎,獎金600元;三球號碼分別為1,5,10為一等獎,獎金2400元;其余情況無獎金.求員工甲抽獎一次所得獎金X的分布列與期望.

查看答案和解析>>

科目: 來源: 題型:解答題

20.甲、乙兩人玩兒擲骰子游戲,游戲規(guī)則規(guī)定:若拋擲處的點數(shù)不少于3點,則拋擲者得1分,對方得0分,若拋擲出的點數(shù)少于3點,則拋擲者得0分,對方得1分,各次拋擲互相獨立,并規(guī)定第一次由甲拋擲,第二次由乙拋擲,第三次再由甲拋擲,依次輪換拋擲.
(Ⅰ)求前3次拋擲甲得2分且乙得1分的概率;
(Ⅱ)ξ表示前3此拋擲乙的得分,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案