相關(guān)習(xí)題
 0  235065  235073  235079  235083  235089  235091  235095  235101  235103  235109  235115  235119  235121  235125  235131  235133  235139  235143  235145  235149  235151  235155  235157  235159  235160  235161  235163  235164  235165  235167  235169  235173  235175  235179  235181  235185  235191  235193  235199  235203  235205  235209  235215  235221  235223  235229  235233  235235  235241  235245  235251  235259  266669 

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸交于點(0,1),它在y軸右側(cè)的得一個最高點和最低點的坐標分別為(x0,2)、(x0+3π,-2).
(1)求f(x)的解析式;
(2)將y=f(x)圖象上所有點的橫坐標縮短到原來的$\frac{1}{3}$(縱坐標不變),然后將所得圖象按向右平移$\frac{π}{3}$,得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式,并用列表作圖的方法畫出y=g(x)在長度為一個周期的閉區(qū)間上的簡圖.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知兩個定點A(-2,0),B(1,0),動點P滿足|PA|=2|PB|.設(shè)動點P的軌跡為曲線C,過點(0,-3)的直線l與曲線C交于不同的兩點D(x1,y1),E(x2,y2).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)求直線l斜率的取值范圍;
(Ⅲ)若x1x2+y1y2=3,求|DE|.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=2x-2-x,定義域為R,函數(shù)g(x)=2x+1-22x,定義域為[-1,1].
(Ⅰ)判斷函數(shù)f(x)的奇偶性并證明;
(Ⅱ)若不等式f[g(x)]+f(-m2+2m+2)≤0對于一切x∈[-1,1]恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖3,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別為AB,VA的中點.
(Ⅰ)求證:VB∥平面 M OC;
(Ⅱ)求證:平面MOC⊥平面VAB;
(Ⅲ)求三棱錐A-MOC的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=ln(2+x)-ln(2-x)的定義域為A,g(x)=x2+2x+m的值域為B,若A⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

4.一個圓錐的側(cè)面展開圖是半徑為a的半圓,則此圓錐的體積為$\frac{\sqrt{3}{a}^{3}π}{24}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)A,B分別是直線y=$\frac{{2\sqrt{5}}}{5}$x和y=-$\frac{{2\sqrt{5}}}{5}$x上的動點,且|AB|=2$\sqrt{5}$,設(shè)O為坐標原點,動點P滿足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)斜率為1不經(jīng)過原點O,且與動點P的軌跡相交于C,D兩點,M為線段CD的中點,直線CD與直線OM能否垂直?證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左焦點為F(-1,0),過點D(0,2)且斜率為k的直線l交橢圓于A,B兩點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.拋物線C:y2=2px(p>0)上點M(x,y)到準線的距離為x+2.
(I)求p的值;
(II)設(shè)過拋物線C焦點F的直線l交C的于A(x1,y1),B(x2,y2)兩點,求y1•y2值.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知斜率為$\frac{1}{2}$的直線l與曲線y=$\frac{x^2}{4}$-lnx相切,則直線l方程為$\frac{1}{2}$x-y-ln2=0.

查看答案和解析>>

同步練習(xí)冊答案