相關(guān)習(xí)題
 0  235083  235091  235097  235101  235107  235109  235113  235119  235121  235127  235133  235137  235139  235143  235149  235151  235157  235161  235163  235167  235169  235173  235175  235177  235178  235179  235181  235182  235183  235185  235187  235191  235193  235197  235199  235203  235209  235211  235217  235221  235223  235227  235233  235239  235241  235247  235251  235253  235259  235263  235269  235277  266669 

科目: 來源: 題型:解答題

14.已知數(shù)列{an}滿足Sn=$\frac{{n}^{2}+n}{2}$,等比數(shù)列{bn}滿足b2=4,b4=16.
(1)求數(shù)列{an}、數(shù)列{bn}的通項公式;
(2)求數(shù)列{an•bn}的前n項和Tn
(3)在(2)的條件下,當(dāng)n≥2時$\frac{n-1}{{T}_{n}-2}$+2n-5≥k恒成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.計算:8${\;}^{\frac{2}{3}}$×16${\;}^{-\frac{1}{2}}$+10lg3+lg$\sqrt{\frac{3}{5}}$+$\frac{1}{2}$lg$\frac{5}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.函數(shù)f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個整數(shù),則實數(shù)k的取值范圍為(  )
A.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$)B.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$]C.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1]D.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1)

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知函數(shù)f(x)=-2|x|+1,定義函數(shù)F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,則F(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知f(x)=$\frac{ax+b}{1+{x}^{2}}$(a,b為常數(shù))是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{4}{5}$.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

9.?dāng)?shù)列{an}的前n項和Sn=2n,數(shù)列{bn}滿足:b1=-1,bn+1=bn+(2n-1).(n∈N*)
(1)求數(shù)列{an}的通項an;    
(2)求數(shù)列{bn}的通項bn

查看答案和解析>>

科目: 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$(t為參數(shù)),在以原點O為極點,x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$\frac{\sqrt{2}}{2}$ρcos(θ+$\frac{π}{4}$)=-1.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與x軸,y軸分別交于A,B兩點,點P是圓C上任一點,求A,B兩點的極坐標(biāo)和△PAB面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在△ABC中,a,b,c分別是角A,B,C所對的邊,a2-c2=2b且sinAcosC=3cosAsinC,求b.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.給出定義:如果函數(shù)f(x)在區(qū)間[a,b]上可導(dǎo),其導(dǎo)函數(shù)為f'(x),且?x1,x2∈(a,b),當(dāng)x1≠x2時總滿足:f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(a)-f(b)}{a-b}$,則稱實數(shù)x1,x2為[a,b]上的“希望數(shù)”,函數(shù)f(x)為[a,b]上的“希望函數(shù)”.如果函數(shù)f(x)=$\frac{1}{3}$x3-x2+k是[0,k]上的“希望函數(shù)”,那么實數(shù)k的取值范圍是( 。
A.($\frac{3}{2}$,3)B.(2,3)C.($\frac{3}{2}$,2$\sqrt{3}$)D.(2,2$\sqrt{3}$)

查看答案和解析>>

科目: 來源: 題型:解答題

5.(理科)如圖,已知四棱錐P-ABCD的底面ABCD為菱形,且∠ABC=60°,AB=PC=2,PA=PB=$\sqrt{2}$,
(1)求證:平面PAB⊥平面ABCD;
(2)求二面角P-AC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案