相關(guān)習(xí)題
 0  235334  235342  235348  235352  235358  235360  235364  235370  235372  235378  235384  235388  235390  235394  235400  235402  235408  235412  235414  235418  235420  235424  235426  235428  235429  235430  235432  235433  235434  235436  235438  235442  235444  235448  235450  235454  235460  235462  235468  235472  235474  235478  235484  235490  235492  235498  235502  235504  235510  235514  235520  235528  266669 

科目: 來源: 題型:解答題

18.中石化集團(tuán)通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探.由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:
井號I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預(yù)報值;
(2)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知O是△ABC中的一點,$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow 0$,則△OAB與△OAC的面積之比為( 。
A.1:3B.1C.5:3D.3:5

查看答案和解析>>

科目: 來源: 題型:選擇題

16.對于實數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.32]=0,[5.68]=5.若n為正整數(shù),an=[$\frac{n}{4}$],Sn為數(shù)列{an}的前n項和,則S40=( 。
A.190B.180C.170D.160

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若?x∈(-1,2),ax+2≠0是假命題的一個充分不必要條件為a∈( 。
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-∞,-1)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.?dāng)?shù)列{an}滿足2an=an+1+an+1(n≥2),且a1+a3+a5=9,a2+a4+a6=12則a3+a4+a5=( 。
A.9B.10C.11D.12

查看答案和解析>>

科目: 來源: 題型:選擇題

13.下面函數(shù)中在定義域內(nèi)是奇函數(shù)和單調(diào)增函數(shù)的是( 。
A.y=e-x-exB.y=tanxC.y=x-3|x|D.y=ln(x+2)-ln(2-x)

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知長方體ABCD-A1B1C1D1,其中AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后.得到如圖所示的,且這個幾何體的體積為$\frac{40}{3}$.
(1)求幾何體ABCD-A1C1D1的表面積;
(2)若點P在線段BC1上,且A1P⊥C1D,求線段A1P的長.

查看答案和解析>>

科目: 來源: 題型:填空題

11.如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是(2)(3).
(1)A′C⊥BD;
(2)∠BA′C=90°;
(3)四面體A′-BCD的體積為$\frac{1}{6}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過點F2的直線交雙曲線右支于A、B兩點.若AF2⊥AF1,且|BF2|=2|AF1|,則雙曲線的離心率為(  )
A.$\frac{\sqrt{17}}{3}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{13}$D.$\frac{\sqrt{58}}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.以橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的頂點為頂點,離心率為2的雙曲線方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1
C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案