相關(guān)習(xí)題
 0  235446  235454  235460  235464  235470  235472  235476  235482  235484  235490  235496  235500  235502  235506  235512  235514  235520  235524  235526  235530  235532  235536  235538  235540  235541  235542  235544  235545  235546  235548  235550  235554  235556  235560  235562  235566  235572  235574  235580  235584  235586  235590  235596  235602  235604  235610  235614  235616  235622  235626  235632  235640  266669 

科目: 來源: 題型:填空題

19.若某圓錐的母線長(zhǎng)為2,側(cè)面展開圖為一個(gè)半圓,則該圓錐的表面積為3π.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),則f($\frac{1}{4}$)=$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.定義域是一切實(shí)數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱f(x)實(shí)數(shù)一個(gè)“λ一半隨函數(shù)”,有下列關(guān)于“λ一半隨函數(shù)”的結(jié)論:①若f(x)為“1一半隨函數(shù)”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個(gè)“λ一半隨函數(shù);③“$\frac{1}{2}$一半隨函數(shù)”至少有一個(gè)零點(diǎn);④f(x)=x2是一個(gè)“λ一班隨函數(shù)”;其中正確的結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目: 來源: 題型:選擇題

16.如圖,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬元)

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元?

查看答案和解析>>

科目: 來源: 題型:選擇題

14.有一個(gè)幾何體的三視圖及其尺寸如下(單位:cm),其側(cè)視圖和主視圖是全等的三角形,則該幾何體的表面積為( 。
A.12cm2B.15πcm2C.24πcm2D.36πcm2

查看答案和解析>>

科目: 來源: 題型:填空題

13.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出T的值為120.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知$0<x<\frac{1}{3}$,則x(1-3x)取最大值時(shí)x的值是( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知條件p:x>1,條件q:x>0,則p是q的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既非充分也非必要

查看答案和解析>>

科目: 來源: 題型:解答題

10.甲、乙兩人各進(jìn)行3次射擊,甲、乙每次擊中目標(biāo)的概率分別為$\frac{1}{2}$和$\frac{2}{3}$.
(1)求甲至多擊中目標(biāo)2次的概率;
(2)記乙擊中目標(biāo)的次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案