相關(guān)習(xí)題
 0  235495  235503  235509  235513  235519  235521  235525  235531  235533  235539  235545  235549  235551  235555  235561  235563  235569  235573  235575  235579  235581  235585  235587  235589  235590  235591  235593  235594  235595  235597  235599  235603  235605  235609  235611  235615  235621  235623  235629  235633  235635  235639  235645  235651  235653  235659  235663  235665  235671  235675  235681  235689  266669 

科目: 來源: 題型:填空題

1.如圖,在△ABC中,已知$\overrightarrow{AN}$=$\frac{1}{2}\overrightarrow{AC}$,P是BN上一點,若$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,則實數(shù)m的值是$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

20.設(shè)集合A={1,3,5,7},B={2,3,4},則A∩B={3}.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-$\frac{a}{x}-1$.
(1)若曲線y=f(x)存在斜率為-1的切線,求實數(shù)a的取值范圍;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)g(x)=$\frac{x+a}{lnx}$,求證:當(dāng)-1<a<0時,g(x)在(1,+∞)上存在極小值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知A(0,2),B(3,1)是橢圓G:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$上的兩點.
(1)求橢圓G的離心率;
(2)已知直線l過點B,且與橢圓G交于另一點C(不同于點A),若以BC為直徑的圓經(jīng)過點A,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.對具有線性相關(guān)關(guān)系的變量x,y,測得一組數(shù)據(jù)如下
x1234
y4.5432.5
根據(jù)表,利用最小二乘法得到它的回歸直線方程為( 。
A.y=-0.7x+5.20B.y=-0.7x+4.25C.y=-0.7x+6.25D.y=-0.7x+5.25

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知拋物線C:y2=4x,焦點為F,過點P(-1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點,直線AF,BF分別交拋物線C于M,N兩點,若$\frac{|AF|}{|FM|}$+$\frac{|BF|}{|FN|}$=18,則k=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+ax2-1,且f'(1)=-1.
(1)求a的值;
(2)若對于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx-mx(m∈R),g(x)=2f(x)+x2,h(x)=lnx-cx2-bx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)$m≥\frac{{3\sqrt{2}}}{2}$時,g(x)的兩個極值點為x1,x2(x1<x2).
①證明:$0<\frac{x_1}{x_2}≤\frac{1}{2}$;
②若x1,x2恰為h(x)的零點,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上,n∈N*.
(1)求數(shù)列{an},{bn}的通項an和bn
(2)求證:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$;
(3)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-ax2+10.
(1)當(dāng)a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)在區(qū)間[1,2]內(nèi)存在實數(shù)x,使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案