相關(guān)習(xí)題
 0  235514  235522  235528  235532  235538  235540  235544  235550  235552  235558  235564  235568  235570  235574  235580  235582  235588  235592  235594  235598  235600  235604  235606  235608  235609  235610  235612  235613  235614  235616  235618  235622  235624  235628  235630  235634  235640  235642  235648  235652  235654  235658  235664  235670  235672  235678  235682  235684  235690  235694  235700  235708  266669 

科目: 來(lái)源: 題型:解答題

11.已知集合A=[-1,3],B=[m,m+6],m∈R.
(1)當(dāng)m=2時(shí),求A∩∁RB;
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,且經(jīng)過(guò)點(diǎn)A(1,2),過(guò)點(diǎn)F的直線與拋物線C交于P,Q兩點(diǎn).
(Ⅰ)求拋物線C的方程;
(Ⅱ)O為坐標(biāo)原點(diǎn),直線OP,OQ與直線x=-$\frac{p}{2}$分別交于S,T兩點(diǎn),試判斷$\overrightarrow{FS}$•$\overrightarrow{FT}$是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.?dāng)?shù)獨(dú)游戲越來(lái)越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨(dú)比賽,該區(qū)甲、乙、丙、丁四所學(xué)校的學(xué)生積極參賽,參賽學(xué)生的人數(shù)如表所示:
中學(xué) 甲 乙 丙 丁
人數(shù) 30 40 20 10
為了解參賽學(xué)生的數(shù)獨(dú)水平,該科技館采用分層抽樣的方法從這四所中學(xué)的參賽學(xué)生中抽取30名參加問(wèn)卷調(diào)查.
(Ⅰ)問(wèn)甲、乙、丙、丁四所中學(xué)各抽取多少名學(xué)生?
(Ⅱ)從參加問(wèn)卷調(diào)查的30名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來(lái)自同一所中學(xué)的概率;
(Ⅲ)在參加問(wèn)卷調(diào)查的30名學(xué)生中,從來(lái)自甲、丙兩所中學(xué)的學(xué)生中隨機(jī)抽取2名,用X表示抽得甲中學(xué)的學(xué)生人數(shù),求X的分布列.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.如圖所示的多面體中,面ABCD是邊長(zhǎng)為2的正方形,平面PDCQ⊥平面ABCD,PD⊥DC,E,F(xiàn),G分別為棱BC,AD,PA的中點(diǎn).
(Ⅰ)求證:EG∥平面PDCQ;
(Ⅱ)已知二面角P-BF-C的余弦值為$\frac{\sqrt{6}}{6}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.如圖,在△ABC中,D是BC上的點(diǎn),AC=3,CD=2,AD=$\sqrt{7}$,sinB=$\frac{\sqrt{7}}{7}$.
(Ⅰ)求角C的大;
(Ⅱ)求邊AB的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

6.已知f(x)為偶函數(shù),且x≥0時(shí),f(x)=x-[x]([x]表示不超過(guò)x的最大整數(shù)).設(shè)g(x)=f(x)-kx-k(k∈R),若k=1,則函數(shù)g(x)有2個(gè)零點(diǎn);若函數(shù)g(x)三個(gè)不同的零點(diǎn),則k的取值范圍是$({-\frac{1}{3}}\right.,\left.{-\frac{1}{4}}]∪[{\frac{1}{3},\frac{1}{2}})$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{16}=1\;\;(a>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓C上,如果|PF1|+|PF2|=10,那么橢圓C的離心率為$\frac{3}{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-x,g(x)=lnx.
(Ⅰ)求函數(shù)y=xg(x)的單調(diào)區(qū)間;
(Ⅱ)若t∈[$\frac{1}{2}$,1],求y=f[xg(x)+t]在x∈[1,e]上的最小值(結(jié)果用t表示);
(Ⅲ)設(shè)h(x)=f(x)-$\frac{1}{2}$x2-(2a+1)x+(2a+1)g(x),若a∈[e,3],?x1,x2∈[1,2](x1≠x2),|$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{m}{{x}_{1}{x}_{2}}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.設(shè)等比數(shù)列{an}的前n項(xiàng)為Sn,若a1=2,$\frac{{S}_{6}}{{S}_{2}}$=21,則數(shù)列{$\frac{1}{{a}_{n}}$}的前5項(xiàng)和為( 。
A.$\frac{1}{2}$或$\frac{11}{32}$B.$\frac{1}{2}$或$\frac{31}{32}$C.$\frac{11}{32}$或$\frac{31}{32}$D.$\frac{11}{32}$或$\frac{5}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,則當(dāng)實(shí)數(shù)a取最小值時(shí),f[f(-2)]=( 。
A.-2B.4C.9D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案