相關習題
 0  236009  236017  236023  236027  236033  236035  236039  236045  236047  236053  236059  236063  236065  236069  236075  236077  236083  236087  236089  236093  236095  236099  236101  236103  236104  236105  236107  236108  236109  236111  236113  236117  236119  236123  236125  236129  236135  236137  236143  236147  236149  236153  236159  236165  236167  236173  236177  236179  236185  236189  236195  236203  266669 

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$) 的最小正周期為π,將該函數(shù)的圖象向左平移$\frac{π}{6}$個單位后,得到的圖象對應的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(  )
A.關于點($\frac{π}{12}$,0)對稱B.關于直線x=$\frac{π}{12}$對稱
C.關于點($\frac{5}{12}$π,0)對稱D.關于直線x=$\frac{5}{12}$π對稱

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{2\sqrt{3}}{3}$+πB.$\frac{2\sqrt{3}}{3}$+2πC.2 $\sqrt{3}$+2πD.2 $\sqrt{3}$+π

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=blnx.
(Ⅰ)當b=1時,若函數(shù)F(x)=f(x)+ax2-x在其定義域上為增函數(shù),求a的取值范圍;
(Ⅱ)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在ABCD中,角A,B,C所對的邊分別為a,b,c,且$\overrightarrow{m}$=(sinA,sinB-sinC),$\overrightarrow{n}$=(a-$\sqrt{3}$b,b+c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的值;
(2)若△ABC外接圓半徑為2,面積為$\sqrt{3}$且a>b,求a,b.

查看答案和解析>>

科目: 來源: 題型:解答題

10.若函數(shù)y=f(x)對任意的x,y∈R,恒有f(x+y)=f(x)+f(y).當x>0時,恒有f(x)<0
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若f(2)=1,解不等式f(-x2)+2f(x)+4≤0.

查看答案和解析>>

科目: 來源: 題型:填空題

9.用一張4cm×8cm的矩形硬紙卷成圓柱的側(cè)面,則圓柱軸截面的面積為$\frac{32}{π}$cm2(接頭忽略不計).

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知f(x)是定義在R上的偶函數(shù),當x∈[0,+∞)時,f(x)=2x-2,則不等式f(log2x)>0的解集為( 。
A.$(0,\frac{1}{2})∪(2,+∞)$B.$(\frac{1}{2},1)∪(2,+∞)$C.(2,+∞)D.$(\frac{1}{2},1)$

查看答案和解析>>

科目: 來源: 題型:填空題

7.若集合A={x|x2-9x<0},B={x|1<2x<8},則集合A∩B=(0,3).

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知角α∈(-$\frac{π}{2}$,0),cosα=$\frac{4}{5}$,則tan2α=-$\frac{24}{7}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點.從M點測得A點的俯角∠NMA=30°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°;已知山高BC=200m,則山高MN=( 。
A.300mB.200$\sqrt{2}$mC.200$\sqrt{3}$mD.300$\sqrt{2}$m

查看答案和解析>>

同步練習冊答案