相關(guān)習(xí)題
 0  236030  236038  236044  236048  236054  236056  236060  236066  236068  236074  236080  236084  236086  236090  236096  236098  236104  236108  236110  236114  236116  236120  236122  236124  236125  236126  236128  236129  236130  236132  236134  236138  236140  236144  236146  236150  236156  236158  236164  236168  236170  236174  236180  236186  236188  236194  236198  236200  236206  236210  236216  236224  266669 

科目: 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}+rcosθ}\\{y=\frac{\sqrt{2}}{2}+rsinθ}\end{array}$(θ為參數(shù),r>0),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸,并取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求圓心的極坐標(biāo);
(2)若圓C上的點(diǎn)到直線l的最大距離為2$\sqrt{2}$,求r的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx-ax,其中a為參數(shù).
(1)求f(x)的極值;
(2)設(shè)g(x)=$\frac{x-1}{x{e}^{x}}$-lnx-$\frac{2}{x{e}^{2}}$,證明當(dāng)x∈(0,+∞)時(shí),g(x)<1恒成立.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)為定義在R上的可導(dǎo)函數(shù),且為偶函數(shù),x≠0時(shí),xf′(x)>0恒成立,則( 。
A.f(1)<f(-2)<f(3)B.f(-2)<f(1)<f(3)C.f(3)<f(-2)<f(1)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目: 來源: 題型:解答題

2.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x-y+$\sqrt{6}$=0相切
(1)求橢圓C的方程;
(2)若Q(1,0),設(shè)A,B是橢圓C上關(guān)于x軸對(duì)稱的任意不相同的兩點(diǎn),連接AQ交橢圓C于另一點(diǎn)E,證明直線BE與x軸交于定點(diǎn)P.

查看答案和解析>>

科目: 來源: 題型:解答題

1.某軟件公司新開發(fā)一款游戲軟件,該軟件按游戲的難易程度共設(shè)置若干關(guān)的闖關(guān)游戲,為了激發(fā)闖關(guān)熱情,每闖過一關(guān)都獎(jiǎng)勵(lì)若干慧幣(一種網(wǎng)絡(luò)虛擬幣).設(shè)第n關(guān)獎(jiǎng)勵(lì)an個(gè)慧幣,且滿足$\frac{1}{2}$an≤an+1≤4an,a1=1,該軟件提供了兩種獎(jiǎng)勵(lì)方案:第一種,從第二關(guān)開始,每闖過一關(guān)獎(jiǎng)勵(lì)的慧幣數(shù)是前一關(guān)的q倍;第二種,從第二關(guān)開始每一關(guān)比前一關(guān)多獎(jiǎng)勵(lì)d慧幣(d∈R);游戲規(guī)定:闖關(guān)者須于闖關(guān)前任選一種獎(jiǎng)勵(lì)方案.
(Ⅰ)若選擇第一種方案,設(shè)第一關(guān)到第n關(guān)獎(jiǎng)勵(lì)的總慧幣數(shù)為Sn,即Sn=a1+a2+…+an,且$\frac{1}{2}$Sn≤Sn+1
4Sn,求q的取值范圍;
(Ⅱ)如果選擇第二種方案,且設(shè)置第一關(guān)到第k關(guān)獎(jiǎng)勵(lì)的總幣數(shù)為100(即a1+a2+a3+…+ak=100,k∈N*)時(shí)獲特別獎(jiǎng),為了增加獲特別獎(jiǎng)的難度,如何設(shè)置d的取值,使得k最大,并求k的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,兩個(gè)頂點(diǎn)分別為A(-a,0),B(a,0),點(diǎn)M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,過點(diǎn)M斜率為k(k≠0)的直線交橢圓E于C,D兩點(diǎn),其中點(diǎn)C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線AD,BC的斜率分別為k1,k2,求證:$\frac{{k}_{1}}{{k}_{2}}$為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,已知圓M的圓心在直線y=-2x上,且圓M與直線x+y-1=0相切于點(diǎn)P(2,-1).
(1)求圓M的方程;
(2)過坐標(biāo)原點(diǎn)O的直線l被圓M截得的弦長(zhǎng)為$\sqrt{6}$,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,(an-3)an+1-an+4=0(n∈N*).
(1)求a2,a3,a4;
(2)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2c(c>0),左焦點(diǎn)為F,點(diǎn)M的坐標(biāo)為(-2c,0).若橢圓E上存在點(diǎn)P,使得PM=$\sqrt{2}$PF,則橢圓E離心率的取值范圍是[$\frac{\sqrt{3}}{3},\frac{\sqrt{2}}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案