相關(guān)習(xí)題
 0  236031  236039  236045  236049  236055  236057  236061  236067  236069  236075  236081  236085  236087  236091  236097  236099  236105  236109  236111  236115  236117  236121  236123  236125  236126  236127  236129  236130  236131  236133  236135  236139  236141  236145  236147  236151  236157  236159  236165  236169  236171  236175  236181  236187  236189  236195  236199  236201  236207  236211  236217  236225  266669 

科目: 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA=PD=AD=2,點(diǎn)M在線段PC上,N為AD的中點(diǎn).
(1)求證:BC⊥平面PNB
(2)若平面PAD⊥平面ABCD,M是線段PC上一點(diǎn),且二面角M-BN-D為60°,試確定M的位置.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知$|\overrightarrow a|=2,|\overrightarrow b|=3,|\overrightarrow a-\overrightarrow b|=\sqrt{7}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知矩陣M=$[{\begin{array}{l}1&0\\ 0&{\frac{1}{3}}\end{array}}]$
(1)求矩陣M的逆矩陣M-1;
(2)求曲線|x|+|y|=1在矩陣M=$[{\begin{array}{l}1&0\\ 0&{\frac{1}{3}}\end{array}}]$對(duì)應(yīng)的變換作用下得到的曲線C方程;
(3)求曲線C所圍成圖形的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知矩陣M=$[\begin{array}{l}{3}&{0}\\{0}&{1}\end{array}]$,N=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,則矩陣MN的逆矩陣是$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{2}\end{array}]$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.函數(shù)y=2x3-15x2+36x-24的極大值為4,極小值為3.

查看答案和解析>>

科目: 來源: 題型:解答題

10.執(zhí)行如圖程序框圖后,記“輸出(a,b)是好點(diǎn)”為事件A.
(1)若a為區(qū)間[0,5]內(nèi)的整數(shù)值隨機(jī)數(shù),b為區(qū)間[0,2]內(nèi)的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(2)若a為區(qū)間[0,5]內(nèi)的均勻隨機(jī)數(shù),b為區(qū)間[0,2]內(nèi)的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

9.宏利重工有限公司從2012年起,若不改善生產(chǎn)環(huán)境,按現(xiàn)狀生產(chǎn),每月收入為70萬元,同時(shí)將受到環(huán)保部門的處罰,第一個(gè)月罰3萬元,以后每月遞增2萬元的處罰.如果從2012年一月起投資400萬元增加回收凈化設(shè)備以改善生產(chǎn)環(huán)境(改造設(shè)備時(shí)間不計(jì)).按測(cè)算,新設(shè)備投產(chǎn)后的月收入與時(shí)間的關(guān)系如圖所示.
(1)設(shè)f(n)表示投資改造后的前n個(gè)月的總收入,請(qǐng)寫出f(n)的函數(shù)關(guān)系式;
(2)試問:經(jīng)過多少個(gè)月,投資開始見效,也就是說,投資改造后的月累計(jì)純收入多于不改造時(shí)的月累計(jì)純收入?

查看答案和解析>>

科目: 來源: 題型:填空題

8.當(dāng)x∈R,|x|<1時(shí),有如下表述式:1+x+x2+…+xn+…=$\frac{1}{1-{x}^{n}}$,
兩邊同時(shí)積分得:
${∫}_{0}^{\frac{1}{2}}$1dx+${∫}_{0}^{\frac{1}{2}}$xdx+${∫}_{0}^{\frac{1}{2}}$x2dx+…+${∫}_{0}^{\frac{1}{2}}$xndx+…=${∫}_{0}^{\frac{1}{2}}$$\frac{1}{1-x}$dx
從而得到如下等式:1×$\frac{1}{3}$+$\frac{1}{2}$×($\frac{1}{3}$)2+$\frac{1}{3}$×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$×($\frac{1}{3}$)n+1+…=ln3-ln2.
請(qǐng)根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法,計(jì)算:
Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}$$[(\frac{4}{3})^{n+1}-1]$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.若過點(diǎn)(-2,0)的直線l被圓C:$\left\{\begin{array}{l}{x=4+2\sqrt{3}cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù))所截得的線段的長(zhǎng)等于2$\sqrt{3}$,則直線l的傾斜角的取值集合為{$\frac{π}{6}$,$\frac{5π}{6}$}.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,x≥0)和曲線C2:x2+y2=r2(x≥0)都過點(diǎn)A(0,-1),且曲線C1所在的圓錐曲線的離心率為$\frac{\sqrt{3}}{2}$
(1)求曲線C1,C2的方程
(2)設(shè)點(diǎn)B,C分別在曲線C1,C2上,k1,k2分別為直線AB,AC的斜率,當(dāng)k2=4k1時(shí),
①直線BC是否經(jīng)過定點(diǎn)?請(qǐng)說明理由
②設(shè)E(0,1),求|$\overrightarrow{BC}$|•|$\overrightarrow{BE}$|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案