相關習題
 0  236385  236393  236399  236403  236409  236411  236415  236421  236423  236429  236435  236439  236441  236445  236451  236453  236459  236463  236465  236469  236471  236475  236477  236479  236480  236481  236483  236484  236485  236487  236489  236493  236495  236499  236501  236505  236511  236513  236519  236523  236525  236529  236535  236541  236543  236549  236553  236555  236561  236565  236571  236579  266669 

科目: 來源: 題型:選擇題

2.已知A={2,4,5},B={1,3,5,7},則A∩B=( 。
A.{5}B.{2,4}C.{2,5}D.{2,4,5,6}

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知tan α=$\frac{2}{3}$,求下列各式的值:
(1)$\frac{cosα-sinα}{cosα+sinα}$+$\frac{cosα+sinα}{cosα-sinα}$;
(2)$\frac{1}{sinαcosα}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,O為△ABC的外心,D為BC邊上的中點,c=4,$\overrightarrow{AO}$•$\overrightarrow{AD}$=5,sinC+sinA-4sinB=0,則cosA=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{8}$

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知f(x)=x-$\frac{1}{x}$.
(1)若f(log3x)=0,求x的值.;
(2)若x∈[1,+∞),f(mx)+mf(x)<0恒成立,求實數m的取值范圍;
(3)若關于x的方程log2f(x)=log2(ax+1)的解集中恰有一個元素,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.設函數f(x)=ax-(k+1)a-x(a>0且a≠1)是定義在R上的奇函數.
(1)求k的值;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在[0,+∞)上的最小值為-6,求m的值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數f(x)=sin2x+sin(2x-$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)將f(x)的圖象沿x軸向左平移m(m>0)個單位,所得函數g(x)的圖象關于直線x=$\frac{π}{8}$對稱,求m的最小值及m最小時g(x)在$[0,\frac{π}{4}]$上的值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若函數$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$,則f(x)(  )
A.圖象關于$x=\frac{π}{3}$對稱
B.圖象關于$(\frac{2π}{3},0)$對稱
C.在$[\frac{2π}{3},\frac{8π}{3}]$上單調遞減
D.單調遞增區(qū)間是$[2kπ-\frac{4π}{3},2kπ+\frac{2π}{3}](k∈Z)$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.△ABC中,若c2-a2=b2-ab,則內角C的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.某電影公司2012年大陸電影票房為21億元,若該公司大陸電影票房的年平均增長率為x,2016年大陸電影票房為y億元,則y與x的函數關系式為(  )
A.y=84xB.y=21(1+4x)C.y=21x4D.y=21(1+x)4

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知函數f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,則$f(f(\frac{7π}{6}))$=( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案