相關(guān)習(xí)題
 0  239462  239470  239476  239480  239486  239488  239492  239498  239500  239506  239512  239516  239518  239522  239528  239530  239536  239540  239542  239546  239548  239552  239554  239556  239557  239558  239560  239561  239562  239564  239566  239570  239572  239576  239578  239582  239588  239590  239596  239600  239602  239606  239612  239618  239620  239626  239630  239632  239638  239642  239648  239656  266669 

科目: 來源: 題型:選擇題

20.已知物體的運(yùn)動(dòng)方程為s=$\frac{1}{4}{t^4}-4{t^3}+16{t^2}$(t表示時(shí)間,單位:秒;s表示位移,單位:米),則瞬時(shí)速度為0米每秒的時(shí)刻是( 。
A.0秒、2秒或4秒B.0秒、2秒或16秒C.0秒、4秒或8秒D.2秒、8秒或16秒

查看答案和解析>>

科目: 來源: 題型:選擇題

19.如圖所示,在棱長為 6的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱C1D1,B1C1的中點(diǎn),過A,E,F(xiàn)三點(diǎn)作該正方體的截面,則截面的周長為( 。
A.$18+3\sqrt{2}$B.$6\sqrt{13}+3\sqrt{2}$C.$6\sqrt{5}+9\sqrt{2}$D.$10+3\sqrt{2}+4\sqrt{10}$

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)滿足:f(x+3)=-$\frac{1}{f(x)}$,且當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2014)=337.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.某幾何體的三視圖如圖,它的側(cè)視圖與正視圖相同,則它的體積為( 。
A.$2+\frac{{4\sqrt{2}π}}{3}$B.$4+\frac{{8\sqrt{2}π}}{3}$C.$2+\frac{{8\sqrt{2}π}}{3}$D.$4+\frac{{4\sqrt{2}π}}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

16.在△ABC中,已知AB=4,且tanAtanB=$\frac{3}{4}$,則△ABC的面積的最大值為2$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.日晷,是中國古代利用日影測(cè)得時(shí)刻的一種計(jì)時(shí)工具,又稱“日規(guī)”.其原理就是利用太陽的投影方向來測(cè)定并劃分時(shí)刻.利用日晷計(jì)時(shí)的方法是人類在天文計(jì)時(shí)領(lǐng)域的重大發(fā)明,這項(xiàng)發(fā)明被人類沿用達(dá)幾千年之久.如圖是故宮中的一個(gè)日晷,則根據(jù)圖片判斷此日晷的側(cè)(左)視圖可能為  ( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:填空題

14.甲、乙、丙三位同學(xué)獲得某項(xiàng)競(jìng)賽活動(dòng)的前三名,但具體名次未知.3人作出如下預(yù)測(cè):
甲說:我不是第三名;
乙說:我是第三名;
丙說:我不是第一名.
若甲、乙、丙3人的預(yù)測(cè)結(jié)果有且只有一個(gè)正確,由此判斷獲得第一名的是乙.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在(e,f(e))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥ax-$\frac{1}{2}$≥lnx-ax在(0,+∞)上恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知對(duì)任意平面向量$\overrightarrow{AB}$=(x,y),把$\overrightarrow{AB}$繞其起點(diǎn)沿逆時(shí)針旋轉(zhuǎn)θ角得到向量$\overrightarrow{AP}$=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)角θ得到點(diǎn)P,設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{4}$后得到點(diǎn)的軌跡是曲線x2-y2=2,則原來曲線C的方程是(  )
A.xy=-1B.xy=1C.y2-x2=2D.y2-x2=1

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)f(x)=2sin(πx)-$\frac{1}{1-x}$,x∈[-2,4]的所有零點(diǎn)之和為(  )
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案