相關(guān)習(xí)題
 0  239956  239964  239970  239974  239980  239982  239986  239992  239994  240000  240006  240010  240012  240016  240022  240024  240030  240034  240036  240040  240042  240046  240048  240050  240051  240052  240054  240055  240056  240058  240060  240064  240066  240070  240072  240076  240082  240084  240090  240094  240096  240100  240106  240112  240114  240120  240124  240126  240132  240136  240142  240150  266669 

科目: 來源: 題型:解答題

3.在矩形ABCD中,AB=2AD=2$\sqrt{2}$,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM;
(1)求證:AD⊥BM
(2)若點(diǎn)E是線段DB上的一點(diǎn),問點(diǎn)E在何位置時(shí),二面角E-AM-D的余弦值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知復(fù)數(shù)z=m(m-1)+(m-1)i
(1)當(dāng)實(shí)數(shù)m為何值時(shí),復(fù)數(shù)z為純虛數(shù)
(2)當(dāng)m=2時(shí),計(jì)算$\overline{z}$-$\frac{z}{1-i}$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.P為雙曲線2x2-y2=2右支上一點(diǎn),F(xiàn)1,F(xiàn)2分別為左右焦點(diǎn),I為△PF1F2的內(nèi)心,若S${\;}_{△P{F}_{1}{F}_{2}}$=2S${\;}_{△IP{F}_{2}}$+(1+$\frac{1}{λ}$)S${\;}_{△I{F}_{1}{F}_{2}}$,則實(shí)數(shù)λ的值為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知a>0,($\frac{a}{\sqrt{x}}$-x)6展開式的常數(shù)項(xiàng)為240,則${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{16}{3}$+2π.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),?x∈R,都有f(x)+f(-x)=x2,在x>0時(shí),f′(x)<x,若f(4-m)-f(m)≥8-4m,則實(shí)數(shù)m的取值范圍為(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知(1-2x)n(n∈N+)的展開式中第三項(xiàng)和第八項(xiàng)的二項(xiàng)式系數(shù)相等,則展開式所有項(xiàng)的系數(shù)和為( 。
A.1B.-1C.0D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

17.“直線y=x+b與圓x2+y2=1相交”是“0<b<1”的(  )條件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{6}$對稱,且圖象上相鄰最高點(diǎn)的距離為π.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到g(x)的圖象若關(guān)于x的方程g(x)-(2m+1)=0在$[0,\frac{π}{2}]$上有唯一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)$f(x)=2sin(\frac{π}{3}-\frac{x}{2})+1$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)解不等式f(x)>0.

查看答案和解析>>

科目: 來源: 題型:解答題

14.(1)已知f(α)=$\frac{{sin(π-α)cos(π-α)cos(\frac{3π}{2}+α)}}{{cos(\frac{π}{2}+α)sin(π+α)}}$,若α為第二象限角,且$cos(α-\frac{π}{2})=\frac{2}{5}$,求f(α)的值;
(2)已知tanα=3,求2sin2α+sinαcosα-cos2α的值.

查看答案和解析>>

同步練習(xí)冊答案