科目: 來源: 題型:
【題目】已知二次函數(shù)(其中)滿足下列3個條件:
①函數(shù)的圖象過坐標(biāo)原點;
②函數(shù)的對稱軸方程為;
③方程有兩個相等的實數(shù)根,
令.
(1)求函數(shù)的解析式;
(2)求使不等式恒成立的實數(shù)的取值范圍;
(3)已知函數(shù)在上的最小值為,求實數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)
在平面直角坐標(biāo)系中,有三個點的坐標(biāo)分別是.
(1)證明:A,B,C三點不共線;
(2)求過A,B的中點且與直線平行的直線方程;
(3)設(shè)過C且與AB所在的直線垂直的直線為,求與兩坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知6只小白鼠有1只被病毒感染,需要通過對其化驗病毒來確定是否感染.下面是兩種化驗方案:方案甲:逐個化驗,直到能確定感染為止.方案乙:將6只分為兩組,每組三個,并將它們混合在一起化驗,若存在病毒,則表明感染在這三只當(dāng)中,然后逐個化驗,直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個進行化驗.
(1)求依據(jù)方案乙所需化驗恰好為2次的概率.
(2)首次化驗化驗費為10元,第二次化驗化驗費為8元,第三次及其以后每次化驗費都是6元,列出方案甲所需化驗費用的分布列,并估計用方案甲平均需要體驗費多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).
(1) 證明:當(dāng)時,掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目: 來源: 題型:
【題目】某研究小組在電腦上進行人工降雨模擬實驗,準(zhǔn)備用、、三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如表:
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗總次數(shù) |
甲 | 4次 | 6次 | 2次 | 12次 | |
乙 | 3次 | 6次 | 3次 | 12次 | |
丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實驗的統(tǒng)計數(shù)據(jù):
(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),丙地只能是小雨或中雨即達到理想狀態(tài),記“甲、乙、丙三地中達到理想狀態(tài)的個數(shù)”為隨機變量,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分14分)
設(shè)橢圓的離心率為,其左焦點與拋物線的焦點相同.
(1)求此橢圓的方程;
(2)若過此橢圓的右焦點的直線與曲線只有一個交點,則
①求直線的方程;
②橢圓上是否存在點,使得,若存在,請說明一共有幾個點;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了在“十一”黃金周期間降價搞促銷,某超市對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:(1)如果不超過200元,則不予優(yōu)惠;(2)如果超過200元,但不超過500元,則按標(biāo)價給予9折優(yōu)惠;(3)如果超過500元,其中500元按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠。小張兩次去購物,分別付款168元和423元,假設(shè)她一次性購買上述同樣的商品,則應(yīng)付款額為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】【2014高考陜西版文第21題】設(shè)函數(shù).
(1)當(dāng)(為自然對數(shù)的底數(shù))時,求的最小值;
(2)討論函數(shù)零點的個數(shù);
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com