科目: 來源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】自選題:已知曲線C1: (θ為參數(shù)),曲線C2: (t為參數(shù)).
(1)指出C1 , C2各是什么曲線,并說明C1與C2公共點(diǎn)的個(gè)數(shù);
(2)若把C1 , C2上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來的一半,分別得到曲線C1′,C2′.寫出C1′,C2′的參數(shù)方程.C1′與C2′公共點(diǎn)的個(gè)數(shù)和C與C2公共點(diǎn)的個(gè)數(shù)是否相同?說明你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 的左頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)且斜率為1的直線交橢圓于另一點(diǎn),交軸于點(diǎn), .
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于兩點(diǎn),連接(為坐標(biāo)原點(diǎn))并延長(zhǎng)交橢圓于點(diǎn),求面積的最大值及取最大值時(shí)直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,D,E分別為△ABC邊AB,AC的中點(diǎn),直線DE交△ABC的外接圓于F,G兩點(diǎn),若CF∥AB,證明:
(1)CD=BC;
(2)△BCD∽△GBD.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然對(duì)數(shù)的底數(shù),e=2.71828…
(1)當(dāng)a=0時(shí),解不等式f(x)<2;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)設(shè)a≥ ,討論關(guān)于x的方程f(f(x))= 的解的個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)的直角坐標(biāo)為,直線與曲線相交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線: (為給定的正常數(shù), 為參數(shù), )構(gòu)成的集合為,給出下列命題:
①當(dāng)時(shí), 中直線的斜率為;
②中的所有直線可覆蓋整個(gè)坐標(biāo)平面.
③當(dāng)時(shí),存在某個(gè)定點(diǎn),該定點(diǎn)到中的所有直線的距離均相等;
④當(dāng)時(shí), 中的兩條平行直線間的距離的最小值為;
其中正確的是__________(寫出所有正確命題的編號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com