科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與曲線的公共點(diǎn)的橫坐標(biāo)之和為3,求的值;
(2)當(dāng)時,對任意,使恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示:
(1)求ω,φ的值;
(2)設(shè)g(x)=2 f( )f( )﹣1,當(dāng)x∈[0, ]時,求函數(shù)g(x)的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,l1,l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結(jié)M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3 km,點(diǎn)N到l1,l2的距離分別為4 km和5 km.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4 km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于km,求該校址距點(diǎn)O的最近距離.(注:校址視為一個點(diǎn))
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn),動點(diǎn)P 滿足:|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線,求此曲線的方程;
(2)若點(diǎn)Q在直線l1: x+y+3=0上,直線l2經(jīng)過點(diǎn)Q且與曲線只有一個公共點(diǎn)M,求|QM|的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列幾個命題:
① 命題任意,都有,則存在,使得.
② 命題“若且,則且”的逆命題為假命題.
③ 空間任意一點(diǎn)和三點(diǎn),則是三點(diǎn)共線的充分不必要條件.
④ 線性回歸方程對應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個.
其中不正確的個數(shù)為
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為, 若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點(diǎn)”,當(dāng)時,試問是否存在“類對稱點(diǎn)”,若存在,請求出一個“類對稱點(diǎn)”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最小正周期是 ,最小值是﹣2,且圖象經(jīng)過點(diǎn)( ,0),則f(0)= .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn=3n﹣1.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在區(qū)間上的函數(shù)和,如果對任意,都有成立,則稱在區(qū)間上可被替代, 稱為“替代區(qū)間”.給出以下問題:
①在區(qū)間上可被替代;
②如果在區(qū)間可被替代,則;
③設(shè),則存在實(shí)數(shù)及區(qū)間, 使得在區(qū)間上被替代.
其中真命題是
A. ①②③ B. ②③ C. ①③ D. ①②
查看答案和解析>>
科目: 來源: 題型:
【題目】某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設(shè)休閑區(qū)的長A1B1=x米,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com