相關(guān)習(xí)題
 0  257123  257131  257137  257141  257147  257149  257153  257159  257161  257167  257173  257177  257179  257183  257189  257191  257197  257201  257203  257207  257209  257213  257215  257217  257218  257219  257221  257222  257223  257225  257227  257231  257233  257237  257239  257243  257249  257251  257257  257261  257263  257267  257273  257279  257281  257287  257291  257293  257299  257303  257309  257317  266669 

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點為曲線上的動點,求點到直線距離的最大值及其對應(yīng)的點的直角坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
(1)求A∩B.
(2)試求實數(shù)a的取值范圍,使C(A∩B).

查看答案和解析>>

科目: 來源: 題型:

【題目】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為,記,則下列說法正確的是( )

A. 事件的概率為 B. 事件是奇數(shù)互為對立事件

C. 事件互為互斥事件 D. 事件的概率為

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 ,曲線上的動點滿足:

.

1)求曲線的方程;

2)設(shè)為坐標(biāo)原點,第一象限的點分別在上, ,求線段的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】“城中觀海”是近年來國內(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個重要原因.暴雨會沖刷城市的垃圾雜物一起進(jìn)入下水道,據(jù)統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數(shù).當(dāng)下水道的垃圾雜物密度達(dá)到2千克/立方米時,會造成堵塞,此時排水量為0;當(dāng)垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,0.2≤x≤2時,排水量V是垃圾雜物密度x的一次函數(shù).
(1)當(dāng)0≤x≤2時,求函數(shù)V(x)的表達(dá)式;
(2)當(dāng)垃圾雜物密度x為多大時,垃圾雜物量(單位時間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時)f(x)=xV(x)可以達(dá)到最大,求出這個最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4x+a+3,a∈R.
(1)若函數(shù)y=f(x)的圖象與x軸無交點,求a的取值范圍;
(2)若函數(shù)y=f(x)在[﹣1,1]上存在零點,求a的取值范圍;
(3)設(shè)函數(shù)g(x)=bx+5﹣2b,b∈R.當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合P={y|y=( x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為(
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解消費者購物情況,某購物中心在電腦小票中隨機抽取張進(jìn)行統(tǒng)計,將結(jié)果分成6組,分別是: , ,制成如下所示的頻率分布直方圖(假設(shè)消費金額均在元的區(qū)間內(nèi)).

1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票來自元和元區(qū)間(兩區(qū)間都有)的概率;

(2)為做好春節(jié)期間的商場促銷活動,商場設(shè)計了兩種不同的促銷方案.

方案一:全場商品打八五折.

方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案