相關(guān)習(xí)題
 0  257413  257421  257427  257431  257437  257439  257443  257449  257451  257457  257463  257467  257469  257473  257479  257481  257487  257491  257493  257497  257499  257503  257505  257507  257508  257509  257511  257512  257513  257515  257517  257521  257523  257527  257529  257533  257539  257541  257547  257551  257553  257557  257563  257569  257571  257577  257581  257583  257589  257593  257599  257607  266669 

科目: 來(lái)源: 題型:

【題目】在一次小型抽獎(jiǎng)活動(dòng)中,抽獎(jiǎng)規(guī)則如下:一個(gè)不透明的口袋中共有6個(gè)大小相同的球,它們是1個(gè)紅球,1個(gè)黃球,和4個(gè)白球,從中抽到紅球中50元,抽到黃球中10元,抽到白球不中獎(jiǎng).某人從中一次性抽出兩球,求:
(1)該人中獎(jiǎng)的概率;
(2)該人獲得的總獎(jiǎng)金X(元)的分布列和均值E(X).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某媒體為了解某地區(qū)大學(xué)生晚上放學(xué)后使用手機(jī)上網(wǎng)情況,隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每晚使用手機(jī)上網(wǎng)平均所用時(shí)間的頻率分布直方圖.將時(shí)間不低于40分鐘的學(xué)生稱(chēng)為“手機(jī)迷”.

(1)樣本中“手機(jī)迷”有多少人?
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學(xué) 生中,采用隨機(jī)抽樣方法每次抽取1名大學(xué)生,抽取3次,經(jīng)調(diào)查一名“手機(jī)迷”比“非手機(jī)迷”每月的話(huà)費(fèi)平均多40元,記被抽取的3名大學(xué)生中的“手機(jī)迷”人數(shù)為X,且設(shè)3人每月的總話(huà)費(fèi)比“非手機(jī)迷”共多出Y元,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和Y的期望EY

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,首項(xiàng)為a1(a1≠0),公差為d,前n項(xiàng)和為Sn , 且滿(mǎn)足a1S5+15=0,則實(shí)數(shù)d的取值范圍是

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+cx(a≠0,a∈R,c∈R),當(dāng)x=1時(shí),f(x)取得極值﹣2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;
(3)若對(duì)任意x1、x2∈[﹣1,1],不等式|f(x1)﹣f(x2)|≤t恒成立,求實(shí)數(shù)t的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系已知橢圓的左焦點(diǎn)為,離心率為,過(guò)點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過(guò)點(diǎn)的直線(xiàn)與橢圓相交于不同兩點(diǎn)

求證:

面積的最大值

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某校舉行元旦匯演,七位評(píng)委為某班的小品打出的分?jǐn)?shù)如莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差是

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為 人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺(jué)性一致),數(shù)學(xué)期終考試成績(jī)莖葉圖如下:

(1)現(xiàn)從乙班數(shù)學(xué)成績(jī)不低于 分的同學(xué)中隨機(jī)抽取兩名同學(xué),求至少有一名成績(jī)?yōu)?/span> 分的同學(xué)被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于 分的優(yōu)秀,請(qǐng)?zhí)顚?xiě)下面的聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

附:參考公式及數(shù)據(jù)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣kx+2,k∈R.
(1)若k=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)<2在R+上恒成立,求k的取值范圍;
(3)若x1>0,x2>0,x1+x2<ex1x2 , 求證x1+x2>1.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè){an}是公比為正整數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1a2a3=64,b1+b2+b3=﹣42,6a1+b1=2a3+b3=0.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)pn= ,數(shù)列{pn}的前n項(xiàng)和為Sn
①試求最小的正整數(shù)n0 , 使得當(dāng)n≥n0時(shí),都有S2n>0成立;
②是否存在正整數(shù)m,n(m<n),使得Sm=Sn成立?若存在,請(qǐng)求出所有滿(mǎn)足條件的m,n;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 中點(diǎn),

)求證: 平面;

)若, ,求直線(xiàn)與平面所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案