相關習題
 0  257742  257750  257756  257760  257766  257768  257772  257778  257780  257786  257792  257796  257798  257802  257808  257810  257816  257820  257822  257826  257828  257832  257834  257836  257837  257838  257840  257841  257842  257844  257846  257850  257852  257856  257858  257862  257868  257870  257876  257880  257882  257886  257892  257898  257900  257906  257910  257912  257918  257922  257928  257936  266669 

科目: 來源: 題型:

【題目】已知圓的方程為(x﹣1)2+(y﹣1)2=1,P點坐標為(2,3), 求:
(1)過P點的圓的切線長.
(2)過P點的圓的切線方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點.求證: (Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE.

查看答案和解析>>

科目: 來源: 題型:

【題目】某蛋糕店出售一種蛋糕,這種蛋糕的保質期很短,必須當天賣掉,否則容易變質,該蛋糕店每天以每塊16元的成本價格制作這種蛋糕若干塊,然后以每塊26元的價格出售,如果當天賣不完,剩下的蛋糕只能以每塊6元低價出售.蛋糕店記錄了100天該種蛋糕的日需求量n(單位:塊,n∈N*)整理得如圖:
(1)若該蛋糕店某一天制作19塊蛋糕,求當天的利潤y(單位:元)關于當天需求量n的函數(shù)解析式;
(2)若要求出售“出售的蛋糕塊數(shù)不小于n”的頻率不小于0.4,求n的最大值.
(3)若該蛋糕店這100天每天都制作19塊蛋糕,試計算這100天蛋糕店所獲利潤的平均數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】假設小明家訂了一份報紙,送報人可能在早上6:30﹣7:30之間把報紙送到小明家,小明父親離開家去工作的時間在早上7:00﹣8:00之間,問小明父親在離開家前能得到報紙(稱為事件A)的概率是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】抽樣調(diào)查某大型機器設備使用年限x和該年支出維修費用y(萬元),得到數(shù)據(jù)如表

使用年限x

2

3

4

5

6

維修費用y

2.2

3.8

5.5

6.5

7.0

部分數(shù)據(jù)分析如下 =25, yi=112.3, =90
參考公式:線性回歸直線方程為
(1)求線性回歸方程;
(2)由(1)中結論預測第10年所支出的維修費用.

查看答案和解析>>

科目: 來源: 題型:

【題目】袋中共有15個除了顏色外完全相同的球,其中有10個白球,5個紅球.從袋中任取2個球,所取的2個球中恰有1個白球,1個紅球的概率為(
A.
B.
C.
D.1

查看答案和解析>>

科目: 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖輸出的結果為(

A.(﹣2,2)
B.(﹣4,0)
C.(﹣4,﹣4)
D.(0,﹣8)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的離心率為,且過點, , 是橢圓上異于長軸端點的兩點.

(1)求橢圓的方程;

(2)已知直線 ,且,垂足為 ,垂足為,若,且的面積是面積的5倍,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ=2.
(1)若點M的直角坐標為(2, ),直線l與曲線C1交于A、B兩點,求|MA|+|MB|的值.
(2)設曲線C1經(jīng)過伸縮變換 得到曲線C2 , 求曲線C2的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4 cosθ.
(1)求C1與C2交點的直角坐標;
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點P,C2與C3相交于點Q,且|PQ|=8,求α的值.

查看答案和解析>>

同步練習冊答案