科目: 來源: 題型:
【題目】已知雙曲線x2﹣2y2=2的左、右兩個焦點為F1、F2 , 動點P滿足|PF1|+|PF2|=4.
(1)求動點P的軌跡E的方程;
(2)設(shè)過F2且不垂直于坐標(biāo)軸的動直線l交軌跡E于A,B兩點,問:線段OF2上是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為4的菱形中, ,點、分別在邊、上.點與點、不重合, , ,沿將翻折到的位置,使平面平面.
(Ⅰ)求證: 平面;
(Ⅱ)記三棱錐的體積為,四棱錐的體積為,且,求此時線段的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購進該商品10件,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 10 | 15 | 10 | 5 |
①假設(shè)該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進10件該商品,記“當(dāng)天的利潤在區(qū)間”為事件A,求P(A)的估計值.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩所學(xué)校高三年級分別有1 200人,1 000人,為了了解兩所學(xué)校全體高三年級學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 8 | 15 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 15 | x | 3 | 2 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 3 |
則x,y的值分別為( )
(A)、12,7 (B)、 10,7 (C)、 10,8 (D)、 11,9
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2 ,E是PB上任意一點.
(1)求證:AC⊥DE;
(2)已知二面角A﹣PB﹣D的余弦值為 ,若E為PB的中點,求EC與平面PAB所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,拋物線的方程為.
(1)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;
(2)直線的參數(shù)方程是(為參數(shù)),與交于兩點, ,求的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在上具有單調(diào)性,求實數(shù)的取值范圍;
(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.
(1)求a的值;
(2)求平面A1BC1與平面B1BC1所成的銳二面角的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1,2,3,4,現(xiàn)從盒子中隨機抽取卡片.
(1)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于8的概率;
(2)若隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字3的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com