科目: 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù) ,若在[1,e]上至少存在一點(diǎn)x0 , 使得f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,其左、右焦點(diǎn)為F1、F2 , 點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|= , = ,其中O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)如圖,過點(diǎn)S(0,﹣ )的動直線l交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在由圓O:x2+y2=1和橢圓C: =1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為 ,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得 = ,若存在,求此時直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E、F分別是AB、AP的中點(diǎn).
(1)求證:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在遞增等差數(shù)列{an}中,a1=2,a3是a1和a9的等比中項(xiàng). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn= ,Sn為數(shù)列{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)m,使得Sn<m對于任意的n∈N+恒成立?若存在,請求實(shí)數(shù)m的取值范圍,若不存在,試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于數(shù)列,設(shè)表示數(shù)列前項(xiàng), , , 中的最大項(xiàng).?dāng)?shù)列滿足: .
()若,求的前項(xiàng)和.
()設(shè)數(shù)列為等差數(shù)列,證明: 或者(為常數(shù)),, , , .
()設(shè)數(shù)列為等差數(shù)列,公差為,且.
記,
求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租車時間不超過兩小時免費(fèi),超過兩小時的部分每小時收費(fèi)2元(不足1小時的部分按1小時計(jì)算).有甲、乙兩人相互獨(dú)立來該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為 , ;兩小時以上且不超過三小時還車的概率分別為 , ;兩人租車時間都不會超過四小時. (Ⅰ)求甲乙兩人所付的租車費(fèi)用相同的概率.
(Ⅱ)設(shè)甲乙兩人所付的租車費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了解高一年級名學(xué)生在寒假里每天閱讀的平均時間(單位:小時)情況,隨機(jī)抽取了名學(xué)生,記錄他們的閱讀平均時間,將數(shù)據(jù)分成組: , , , ,并整理得到如下的頻率分布直方圖:
()求樣本中閱讀的平均時間為內(nèi)的人數(shù).
()已知樣本中閱讀的平均時間在內(nèi)的學(xué)生有人,現(xiàn)從高一年級名學(xué)生中隨機(jī)抽取一人,估計(jì)其閱讀的平均時間在內(nèi)的概率.
()在樣本中,使用分層抽樣的方法,從閱讀的平均時間在內(nèi)的學(xué)生中抽取人,再從這人中隨機(jī)選取人參加閱讀展示,則選到的學(xué)生恰好閱讀的平均時間都在內(nèi)的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)為提升學(xué)生的英語學(xué)習(xí)能力,進(jìn)行了主題分別為“聽”、“說”、“讀”、“寫”四場競賽.規(guī)定:每場競賽的前三名得分分別為, , (,且, , ),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終分為分,乙最終得分為分,丙最終得分為分,且乙在“聽”這場競賽中獲得了第一名,則“聽”這場競賽的第三名是( )
A. 甲 B. 乙 C. 丙 D. 甲和丙都有可能
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com