科目: 來源: 題型:
【題目】(本小題滿分12分)我們把一系列向量按次序排成一列,稱之為向量列,記作,已知向量列滿足:,.
(1)證明:數(shù)列是等比數(shù)列;
(2)設(shè)表示向量與間的夾角,若,對于任意正整數(shù),不等式恒成立,求實(shí)數(shù)的范圍
(3)設(shè),問數(shù)列中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四面體ABCD的頂點(diǎn)都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,過AD作相互垂直的平面α、β,若平面α、β截球O所得截面分別為圓M、N,則( )
A.MN的長度是定值
B.MN長度的最小值是2
C.圓M面積的最小值是2π
D.圓M、N的面積和是定值8π
查看答案和解析>>
科目: 來源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式 對一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法:
①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為 ,公比為﹣ 的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1 , 并寫出數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn= , 求證:數(shù)列{cn}中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.
查看答案和解析>>
科目: 來源: 題型:
【題目】從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有 種取法.在這 種取法中,可以分成兩類:一類是取出的m個球全部為白球,共有 種取法;另一類是取出的m個球有m﹣1個白球和1個黑球,共有 種取法.顯然 ,即有等式: 成立.試根據(jù)上述思想化簡下列式子: = .
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)函數(shù)f(x)=log2x的圖象和性質(zhì)解決以下問題:
(1)若f(a)>f(2),求a的取值范圍;
(2)y=log2(2x-1)在[2,14]上的最值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時,f(x)= .g(x)= ,
(1)求當(dāng)x<0時,函數(shù)f(x)的解析式,并在給定直角坐標(biāo)系內(nèi)畫出f(x)在區(qū)間[﹣5,5]上的圖象;(不用列表描點(diǎn))
(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國加入WTO時,根據(jù)達(dá)成的協(xié)議,某產(chǎn)品的市場供應(yīng)量P與市場價格x的關(guān)系近似滿足P(x)=2(1-kt)(x-b)2(其中t為關(guān)銳的稅率,且t∈[0, ),x為市場價格,b、k為正常數(shù)).當(dāng)t=時的市場供應(yīng)量曲線如圖所示.
(1)根據(jù)圖象求b、k的值;
(2)記市場需求量為Q,它近似滿足Q(x)=,當(dāng)P=Q時的市場價格稱為市場平衡價格,為使市場平衡價格不低于9元,求稅率的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com