科目: 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函數f(x)的最小值和最小正周期;
(2)設△ABC的內角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,若 =(1,sinA)與 =(2,sinB)共線,求a,b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=ax3+cx(a>0),其圖象在點(1,f(1))處的切線與直線 x﹣6y+21=0垂直,導函數
f′(x)的最小值為﹣12.
(1)求函數f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】數列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)證明:數列{ }是等差數列;
(2)設bn=3n ,求數列{bn}的前n項和Sn .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:在四棱錐中,底面為菱形,且, 底面,
, , 是上點,且平面.
(1)求證: ;(2)求三棱錐的體積.
【答案】(1)見解析;(2).
【解析】試題分析:(1)根據菱形性質得對角線相互垂直,根據底面得,再根據線面垂直判定定理得面即可得結果(2)記與的交點為,則BD 為高,三角形POE為底,根據錐體體積公式求體積
試題解析:(1)面
(2)記與的交點為,連接
平面
在中: , , ,
在中: , ,則,即,
則
【題型】解答題
【結束】
21
【題目】已知橢圓: 的離心率,且其的短軸長等于.
(1)求橢圓的標準方程;
(2)如圖,記圓: ,過定點作相互垂直的直線和,直線(斜率)與圓和橢圓分別交于、兩點,直線與圓和橢圓分別交于、兩點,若與面積之比等于,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數在點處的切線方程為.
(1)求函數的解析式;
(2)求函數的單調區(qū)間和極值.
【答案】(1);(2)見解析.
【解析】試題分析:(1)根據導數幾何意義得,再與聯(lián)立方程組解得, (2)先函數導數,再求導函數零點,列表分析導函數符號變化規(guī)律,進而確定單調區(qū)間和極值
試題解析:(1),切線為,即斜率,縱坐標
即, ,解得,
解析式
(2) ,定義域為
得到在單增,在單減,在單增
極大值,極小值.
【題型】解答題
【結束】
20
【題目】如圖:在四棱錐中,底面為菱形,且, 底面,
, , 是上點,且平面.
(1)求證: ;(2)求三棱錐的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線: 的焦點為圓的圓心.
(1)求拋物線的標準方程;
(2)若斜率的直線過拋物線的焦點與拋物線相交于兩點,求弦長.
【答案】(1);(2)8.
【解析】試題分析:(1)先求圓心得焦點,根據焦點得拋物線方程(2)先根據點斜式得直線方程,與拋物線聯(lián)立方程組,利用韋達定理以及弦長公式得弦長.
試題解析:(1)圓的標準方程為,圓心坐標為,
即焦點坐標為,得到拋物線的方程:
(2)直線: ,聯(lián)立,得到
弦長
【題型】解答題
【結束】
19
【題目】已知函數在點處的切線方程為.
(1)求函數的解析式;
(2)求函數的單調區(qū)間和極值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,a、b、c分別為內角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com