相關習題
 0  259778  259786  259792  259796  259802  259804  259808  259814  259816  259822  259828  259832  259834  259838  259844  259846  259852  259856  259858  259862  259864  259868  259870  259872  259873  259874  259876  259877  259878  259880  259882  259886  259888  259892  259894  259898  259904  259906  259912  259916  259918  259922  259928  259934  259936  259942  259946  259948  259954  259958  259964  259972  266669 

科目: 來源: 題型:

【題目】已知圓過點,且圓心在直線上.

(1)求圓的方程;

(2)平面上有兩點,點是圓上的動點,求的最小值;

(3)若軸上的動點,分別切圓兩點,試問:直線是否恒過定點?若是,求出定點坐標,若不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,為邊的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關關系(所謂兩株作物”相近“是指它們的直線距離不超過1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時,該作物的年收獲量的相關數(shù)據(jù)如下:

X

1

2

3

5

6

7

y

60

55

53

46

45

41


(Ⅰ)求該作物的年收獲量y關于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每一個小正方形的面積為1,若在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.(注:年收獲量以線性回歸方程計算所得數(shù)據(jù)為依據(jù))
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計分別為 = = , =

查看答案和解析>>

科目: 來源: 題型:

【題目】,函數(shù).

(1)當時,求上的單調區(qū)間;

(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓

(1)求圓關于直線對稱的圓的標準方程;

(2)過點的直線被圓截得的弦長為8,求直線的方程;

(3)當取何值時,直線與圓相交的弦長最短,并求出最短弦長.

查看答案和解析>>

科目: 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,現(xiàn)采用分層抽樣的方法從這些學校中抽取5所學校,對學生進行視力檢查.

(1)求應從小學、中學中分別抽取的學校數(shù)目;

(2)若從抽取的5所學校中抽取2所學校作進一步數(shù)據(jù)

①列出所有可能抽取的結果;

②求抽取的2所學校至少有一所中學的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】設集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)xa2-1=0,a∈R},若BA,求實數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,且滿足sin2B+sin2C=sin2A+2sinBsinCsin(B+C). (Ⅰ)求角A的大;
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;

(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量(單位:瓶)為多少時,的數(shù)學期望達到最大值?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,anan+1=2Sn , 設bn= ,若存在正整數(shù)p,q(p<q),使得b1 , bp , bq成等差數(shù)列,則p+q=

查看答案和解析>>

同步練習冊答案