科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,
,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(),,(),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標(biāo)方程為,
曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,
所以曲線C的極坐標(biāo)方程為,
即.
(2)由(1)不妨設(shè)M(),,(),
,
,
當(dāng) 時(shí), ,
所以△MON面積的最大值為.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù), , 滿足,求的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax,a>0.
(1)記f(x)的極小值為g(a),求g(a)的最大值;
(2)若對(duì)任意實(shí)數(shù)x恒有f(x)≥0,求f(a)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見(jiàn)解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當(dāng)時(shí), , 單調(diào)遞減,且;
當(dāng)時(shí), , 單調(diào)遞增;且,
所以在上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,
故,
故.
【點(diǎn)睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在如圖所示的三棱錐ABC﹣A1B1C1中,AA1⊥底面ABC,D,E分別是BC,A1B1的中點(diǎn).
(1)求證:DE∥平面ACC1A1;
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直線BC與平面AB1C所成角的正切值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點(diǎn),當(dāng)∠F1MF2=90°時(shí),△F1MF2的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)A是橢圓C上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線AF1,AF2分別與橢圓交于點(diǎn)B,D,設(shè)直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.
【答案】(Ⅰ)(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)由題意可求得,則,橢圓的方程為.
(Ⅱ)設(shè),,
當(dāng)直線的斜率不存在或直線的斜率不存在時(shí),.
當(dāng)直線、的斜率存在時(shí),,設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理計(jì)算可得直線的斜率為,直線的斜率為,則.綜上可得:直線與的斜率之積為定值.
(Ⅰ)設(shè)由題,
解得,則,橢圓的方程為.
(Ⅱ)設(shè),,當(dāng)直線的斜率不存在時(shí),
設(shè),則,直線的方程為代入,
可得 ,,則,
直線的斜率為,直線的斜率為,
,
當(dāng)直線的斜率不存在時(shí),同理可得.
當(dāng)直線、的斜率存在時(shí),設(shè)直線的方程為,
則由消去可得:,
又,則,代入上述方程可得:
,,
則 ,
設(shè)直線的方程為,同理可得 ,
直線的斜率為
直線的斜率為, .
所以,直線與的斜率之積為定值,即.
【點(diǎn)睛】
(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.
(2)涉及到直線方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)f(x)=(x+b)(-a),(b>0),在(-1,f(-1))處的切線方程為(e-1)x+ey+e-1=0.
(Ⅰ)求a,b;
(Ⅱ)若方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2,且x1<x2,證明:x2-x1≤1+.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.
(Ⅰ)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;
(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在(,](n=1,2,3,4,5)時(shí),日平均派送量為50+2n單.若將頻率視為概率,回答下列問(wèn)題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由。
(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
【答案】(Ⅰ)甲方案的函數(shù)關(guān)系式為: ,乙方案的函數(shù)關(guān)系式為:;(Ⅱ)①見(jiàn)解析,②見(jiàn)解析.
【解析】
(Ⅰ)由題意可得甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為: , 乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:.
(Ⅱ)①由題意求得X的分布列,據(jù)此計(jì)算可得,,.
②答案一:由以上的計(jì)算可知,遠(yuǎn)小于,即甲方案日工資收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.
答案二:由以上的計(jì)算結(jié)果可以看出,,所以小明應(yīng)選擇乙方案.
(Ⅰ)甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為: ,
乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:
(Ⅱ)①由已知,在這100天中,該公司派送員日平均派送單數(shù)滿足如下表格:
單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻率 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以的分布列為:
152 | 154 | 156 | 158 | 160 | |
0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以
所以的分布列為:
140 | 152 | 176 | 200 | |
0.5 | 0.2 | 0.2 | 0.1 |
所以
②答案一:由以上的計(jì)算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日工資收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.
答案二:由以上的計(jì)算結(jié)果可以看出,,即甲方案日工資期望小于乙方案日工資期望,所以小明應(yīng)選擇乙方案.
【點(diǎn)睛】
本題主要考查頻率分布直方圖,數(shù)學(xué)期望與方差的含義與實(shí)際應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.
【題型】解答題
【結(jié)束】
20
【題目】已知橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點(diǎn),當(dāng)∠F1MF2=90°時(shí),△F1MF2的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)A是橢圓C上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線AF1,AF2分別與橢圓交于點(diǎn)B,D,設(shè)直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有an= +2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.
(Ⅰ)點(diǎn)M為棱AB上一點(diǎn),若BC∥平面SDM,AM=λAB,求實(shí)數(shù)λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由線面平行的性質(zhì)定理可得,據(jù)此可知四邊形BCDM為平行四邊形,據(jù)此可得.
(Ⅱ)由幾何關(guān)系,在平面內(nèi)過(guò)點(diǎn)作直線于點(diǎn),以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立空間坐標(biāo)系,據(jù)此可得平面的一個(gè)法向量,平面的一個(gè)法向量,據(jù)此計(jì)算可得二面角余弦值為.
(Ⅰ)因?yàn)?/span>平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以,
因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點(diǎn).
因?yàn)?/span> .
(Ⅱ)因?yàn)?/span> , ,所以平面,又因?yàn)?/span>平面,
所以平面平面,平面平面,
在平面內(nèi)過(guò)點(diǎn)作直線于點(diǎn),則平面,
在和中,因?yàn)?/span>,所以,
又由題知,所以所以,
以下建系求解.以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立如圖所示空間坐標(biāo)系,
則,,,,,
,,,,
設(shè)平面的法向量,則,所,
令得為平面的一個(gè)法向量,
同理得為平面的一個(gè)法向量,
,因?yàn)槎娼?/span>為鈍角.
所以二面角余弦值為.
【點(diǎn)睛】
本題考查了立體幾何中的判斷定理和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.
(Ⅰ)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;
(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在(,](n=1,2,3,4,5)時(shí),日平均派送量為50+2n單.若將頻率視為概率,回答下列問(wèn)題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由。
(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知等比數(shù)列{}的前n項(xiàng)和為,且滿足2=+m(m∈R).
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{}滿足,求數(shù)列{}的前n項(xiàng)和.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)法一:由前n項(xiàng)和與數(shù)列通項(xiàng)公式的關(guān)系可得數(shù)列的通項(xiàng)公式為;
法二:由題意可得,則,據(jù)此可得數(shù)列的通項(xiàng)公式為.
(Ⅱ)由(Ⅰ)可得,裂項(xiàng)求和可得.
(Ⅰ)法一:
由得,
當(dāng)時(shí),,即,
又,當(dāng)時(shí)符合上式,所以通項(xiàng)公式為.
法二:
由得
從而有,
所以等比數(shù)列公比,首項(xiàng),因此通項(xiàng)公式為.
(Ⅱ)由(Ⅰ)可得,
,
.
【點(diǎn)睛】
本題主要考查數(shù)列前n項(xiàng)和與通項(xiàng)公式的關(guān)系,裂項(xiàng)求和的方法等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.
【題型】解答題
【結(jié)束】
18
【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.
(Ⅰ)點(diǎn)M為棱AB上一點(diǎn),若BC∥平面SDM,AM=λAB,求實(shí)數(shù)λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com