相關(guān)習(xí)題
 0  260356  260364  260370  260374  260380  260382  260386  260392  260394  260400  260406  260410  260412  260416  260422  260424  260430  260434  260436  260440  260442  260446  260448  260450  260451  260452  260454  260455  260456  260458  260460  260464  260466  260470  260472  260476  260482  260484  260490  260494  260496  260500  260506  260512  260514  260520  260524  260526  260532  260536  260542  260550  266669 

科目: 來源: 題型:

【題目】若函數(shù)f(x)=ex(x2+ax+b)有極值點x1 , x2(x1<x2),且f(x1)=x1 , 則關(guān)于x的方程f2(x)+(2+a)f(x)+a+b=0的不同實根個數(shù)為(
A.0
B.3
C.4
D.5

查看答案和解析>>

科目: 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)= ,g(x)=|x﹣2|,則下列結(jié)論正確的是(
A.h(x)=f(x)+g(x)是偶函數(shù)
B.h(x)=f(x)?g(x)是奇函數(shù)
C.h(x)= 是偶函數(shù)
D.h(x)= 是奇函數(shù)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程

(2)過的直線兩點,交直線于點.證明:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題p:不等式ax2+ax+1>0的解集為R,則實數(shù)a∈(0,4);命題q“x2﹣2x﹣8>0”是“x>5”的必要不充分條件,則下列命題正確的是(
A.p∧q
B.p∧(¬q)
C.(¬p)∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣2|.
(1)求不等式f(x)>2的解集;
(2)x∈R,使f(x)≥t2 t,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某興趣小組欲研究某地區(qū)晝夜溫差大小與患感冒就診人數(shù)之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1到5月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

晝夜溫差

8

10

13

12

9

就診人數(shù)(個)

18

25

28

26

17

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取一組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用選取的一組數(shù)據(jù)進(jìn)行檢驗.

(1)若選取的是1月的一組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù).求出關(guān)于的線性回歸方程

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2,則認(rèn)為得到的線性回歸方程是理想的,試判斷該小組所得的線性回歸方程是否理想?如果不理想,請說明理由,如果理想,試預(yù)測晝夜溫差為時,因感冒而就診的人數(shù)約為多少?

參考公式:, .

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點O為極點,x軸為正半軸為極軸,建立極坐標(biāo)系.設(shè)曲線C: (α為參數(shù));直線l:ρ(cosθ+sinθ)=4.
(Ⅰ)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)求曲線C上的點到直線l的最大距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長為,的中點.

(1)求證:直線平面;

(2)求二面角的大小.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4﹣1:平面幾何 如圖AB是⊙O的直徑,弦BD,CA的延長線相交于點E,EF垂直BA的延長線于點F.
(I)求證:∠DEA=∠DFA;
(II)若∠EBA=30°,EF= ,EA=2AC,求AF的長.

查看答案和解析>>

同步練習(xí)冊答案