相關(guān)習(xí)題
 0  260362  260370  260376  260380  260386  260388  260392  260398  260400  260406  260412  260416  260418  260422  260428  260430  260436  260440  260442  260446  260448  260452  260454  260456  260457  260458  260460  260461  260462  260464  260466  260470  260472  260476  260478  260482  260488  260490  260496  260500  260502  260506  260512  260518  260520  260526  260530  260532  260538  260542  260548  260556  266669 

科目: 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為 . (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)f(x)=lnx﹣ax2+x有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
D.(0,

查看答案和解析>>

科目: 來源: 題型:

【題目】點(diǎn)S、A、B、C在半徑為 的同一球面上,點(diǎn)S到平面ABC的距離為 ,AB=BC=CA= ,則點(diǎn)S與△ABC中心的距離為(
A.
B.
C.1
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1+3a2+…+(2n﹣1)an=2n.(12分)
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和.

查看答案和解析>>

科目: 來源: 題型:

【題目】某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(12分)
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直三棱柱中,,,分別是的中點(diǎn).

(1)證明:平面平面

(2)求三棱錐的高.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,直線

(1)求證:不論取何實(shí)數(shù),直線與圓總有兩個(gè)不同的交點(diǎn);

(2)設(shè)直線與圓交于點(diǎn)當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖四面體ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點(diǎn),且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx﹣2與x軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1),當(dāng)m變化時(shí),解答下列問題:(12分)
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A、B、C三點(diǎn)的圓在y軸上截得的弦長為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.(10分)
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.

查看答案和解析>>

同步練習(xí)冊答案