科目: 來源: 題型:
【題目】如圖,已知F1、F2是橢圓G: 的左、右焦點,直線l:y=k(x+1)經(jīng)過左焦點F1 , 且與橢圓G交于A、B兩點,△ABF2的周長為 .
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得△ABF2為等腰直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),橢圓C的右焦點F的坐標(biāo)為 ,短軸長為2.
(I)求橢圓C的方程;
(II)若點P為直線x=4上的一個動點,A,B為橢圓的左、右頂點,直線AP,BP分別與橢圓C的另一個交點分別為M,N,求證:直線MN恒過點E(1,0).
查看答案和解析>>
科目: 來源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運動”團(tuán)隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表(設(shè)步數(shù)為x)
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫出m,n的值,若該“微信運動”團(tuán)隊共有120人,請估計該團(tuán)隊中一天行走步數(shù)不少于7500步的人數(shù);
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 與 的大小;(只需寫出結(jié)論)
(Ⅲ)從上述A,E兩個組別的步數(shù)數(shù)據(jù)中任取2個數(shù)據(jù),求這2個數(shù)據(jù)步數(shù)差的絕對值大于3000步的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運動”團(tuán)隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表(設(shè)步數(shù)為x)
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫出m,n的值,并回答這20名“微信運動”團(tuán)隊成員一天行走步數(shù)的中位數(shù)落在哪個組別;
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 與 的大;(只需寫出結(jié)論)
(Ⅲ)從上述A,E兩個組別的數(shù)據(jù)中任取2個數(shù)據(jù),記這2個數(shù)據(jù)步數(shù)差的絕對值為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求證:AC∥ED;
(Ⅱ)求證:DC⊥BC;
(Ⅲ)當(dāng)BC=CD=DE=1時,求二面角A﹣BE﹣D的余弦值;
(Ⅳ)在棱AB上是否存在點P滿足EP∥平面BDC;
(Ⅴ)設(shè) =k,是否存在k滿足平面ABE⊥平面CBE?若存在求出k值,若不存在說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB= ,AC∩BD=O,且PO⊥平面ABCD,PO= ,點F,G分別是線段PB,PD上的中點,E在PA上,且PA=3PE.
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)求直線AB與平面EFG的成角的正弦值;
(Ⅲ)請畫出平面EFG與四棱錐的表面的交線,并寫出作圖的步驟.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=4sin (ω>0). (Ⅰ)若ω=3,求f(x)在區(qū)間 上的最小值;
(Ⅱ)若函數(shù)f(x)的圖象如圖所示,求ω的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com