相關(guān)習(xí)題
 0  260474  260482  260488  260492  260498  260500  260504  260510  260512  260518  260524  260528  260530  260534  260540  260542  260548  260552  260554  260558  260560  260564  260566  260568  260569  260570  260572  260573  260574  260576  260578  260582  260584  260588  260590  260594  260600  260602  260608  260612  260614  260618  260624  260630  260632  260638  260642  260644  260650  260654  260660  260668  266669 

科目: 來源: 題型:

【題目】在如圖所示的圓柱O1O2中,等腰梯形ABCD內(nèi)接于下底面圓O1 , AB∥CD,且AB為圓O1的直徑,EA和FC都是圓柱O1O2的母線,M為線段EF的中點.
(1)求證:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直線AF與平面ABC所成的角為30°,求平面MAB與平面EAD所成的角(銳角)的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】春節(jié)期間商場為活躍節(jié)日氣氛,特舉行“購物有獎”抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,每次中獎可以獲得20元購物代金券,方案乙的中獎率為 ,每次中獎可以獲得30元購物代金券,未中獎則不獲得購物代金券,每次抽獎中獎與否互不影響,已知小明通過購物獲得了2次抽獎機(jī)會.
(1)若小明選擇方案甲、乙各抽獎一次,記他累計獲得的購物代金券面額之和為X,求X≤30的概率;
(2)設(shè)小明兩次抽獎都選擇方案甲或都選擇方案乙,且都選擇方案乙時,已算得,累計獲得的購物代金券面額之和X1的數(shù)學(xué)期望E(X1)=24,問:小明選擇這兩種方案中的何種方案抽獎,累計獲得的購物代金券面額之和的數(shù)學(xué)期望較大?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )+cos(2x+ )+sin2x
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若f( )= ,a=2,b= ,求c的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣t有三個不同的零點x1 , x2 , x3 , 且x1<x2<x3 , 則﹣ + + 的取值范圍是

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線l:x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的一條對稱軸,過點A(﹣4,a)作圓C的兩條切線,切點分別為B、D,則直線BD的方程為

查看答案和解析>>

科目: 來源: 題型:

【題目】為了了解一片經(jīng)濟(jì)林的生長情況,隨機(jī)抽測了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有株樹木的底部周長小于110cm.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線E: (a>0,b>0)的右頂點為A,拋物線C:y2=8ax的焦點為F,若在E的漸近線上存在點P使得PA⊥FP,則E的離心率的取值范圍是(
A.(1,2)
B.(1, ]
C.(2,+∞)
D.[ ,+∞)

查看答案和解析>>

科目: 來源: 題型:

【題目】宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題,松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的a=10,b=4,則輸出的n=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目: 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象沿x軸向右平移φ(φ>0)個單位,得到一個偶函數(shù)的圖象,則φ的一個可能取值為(
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知焦距為2 的橢圓C: + =1(a>b>0)的右頂點為A,直線y= 與橢圓C交于P、Q兩點(P在Q的左邊),Q在x軸上的射影為B,且四邊形ABPQ是平行四邊形.
(1)求橢圓C的方程;
(2)斜率為k的直線l與橢圓C交于兩個不同的點M,N.
(i)若直線l過原點且與坐標(biāo)軸不重合,E是直線3x+3y﹣2=0上一點,且△EMN是以E為直角頂點的等腰直角三角形,求k的值
(ii)若M是橢圓的左頂點,D是直線MN上一點,且DA⊥AM,點G是x軸上異于點M的點,且以DN為直徑的圓恒過直線AN和DG的交點,求證:點G是定點.

查看答案和解析>>

同步練習(xí)冊答案