科目: 來(lái)源: 題型:
【題目】已知坐標(biāo)平面上動(dòng)點(diǎn) 與兩個(gè)定點(diǎn) , ,且 .
(1)求點(diǎn) 的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中軌跡為 ,過(guò)點(diǎn) 的直線 被 所截得的線段長(zhǎng)度為8,求直線 的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】近年來(lái)鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機(jī)抽取一年(365天)內(nèi)100天的空氣中 指數(shù)的監(jiān)測(cè)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為 (單位:元), 指數(shù)為 .當(dāng) 在區(qū)間 內(nèi)時(shí)對(duì)企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;當(dāng) 在區(qū)間 內(nèi)時(shí)對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng) 指數(shù)為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng) 指數(shù)為200 時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng) 指數(shù)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
(1)試寫(xiě)出 的表達(dá)式;
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失 大于500元且不超過(guò)900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有 的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四棱錐 中,底面梯形 , ,平面 平面 , 是等邊三角形,已知 , , 是 上任意一點(diǎn), ,且 .
(1)求證:平面 平面 ;
(2)試確定 的值,使三棱錐 體積為三棱錐 體積的3倍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖直三棱柱 中, 為邊長(zhǎng)為2的等邊三角形, ,點(diǎn) 、 、 、 、 分別是邊 、 、 、 、 的中點(diǎn),動(dòng)點(diǎn) 在四邊形 內(nèi)部運(yùn)動(dòng),并且始終有 平面 ,則動(dòng)點(diǎn) 的軌跡長(zhǎng)度為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】我們可以用隨機(jī)模擬的方法估計(jì) 的值,如圖程序框圖表示其基本步驟(函數(shù) 是產(chǎn)生隨機(jī)數(shù)的函數(shù),它能隨機(jī)產(chǎn)生 內(nèi)的任何一個(gè)實(shí)數(shù)).若輸出的結(jié)果為 ,則由此可估計(jì) 的近似值為( )
A.3.119
B.3.124
C.3.132
D.3.151
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a·2x+b·3x , 其中常數(shù)a,b滿(mǎn)足ab≠0.
(1)若ab>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若ab<0,求f(x+1)>f(x)時(shí)x的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實(shí)數(shù)t , 使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x∈R都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=b·ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24).
(1)求f(x);
(2)若不等式 -m≥0在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù),a≠0,x∈R).
(1)若函數(shù)f(x)的圖象過(guò)點(diǎn)(-2,1),且方程f(x)=0有且只有一個(gè)根,求f(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-1,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com