科目: 來源: 題型:
【題目】如圖,在三棱錐PABC中,不能證明AP⊥BC的條件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.
(Ⅰ)解不等式:f(x)<10;
(Ⅱ)若對任意的實數(shù)x,f(x)-|x|≤a恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cosθ-2sinθ.
(Ⅰ)求C的參數(shù)方程;
(Ⅱ)若點A在圓C上,點B(3,0),求AB中點P到原點O的距離平方的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)=a-2ln x(a∈R).
(Ⅰ)當a=2時,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若a>,且m,n分別為f(x)的極大值和極小值,S=m-n,求證:S<.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: (a>b>0)經(jīng)過點(,1),以原點為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得恒為定值?若存在,求出該定值及點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,M是CC1中點.
(Ⅰ)求證:平面AB1M⊥平面A1ABB1;
(Ⅱ)過點C作一截面與平面AB1M平行,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(Ⅰ)求圖中實數(shù)a,b的值;
(Ⅱ)若該校高一年級共有學生640人,試估計該校高一年級期中考試數(shù)學成績不低于80分的人數(shù);
(Ⅲ)若從樣本中數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這兩名學生的數(shù)學成績之差的絕對值大于10的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù)f(x)=|x-1|+|x-a|,a∈R.
(Ⅰ)當a=4時,求不等式f(x)≥7的解集;
(Ⅱ)若f(x)≥5對x∈R恒成立,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線M的參數(shù)方程為 (θ為參數(shù)),若以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線N的極坐標方程為ρsin(θ+)=t(其中t為常數(shù)).
(Ⅰ)若曲線N與曲線M只有一個公共點,求t的值;
(Ⅱ)當t=-1時,求曲線M上的點與曲線N上的點的最小距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= (a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有兩個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com