科目: 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: , .
參考數(shù)據(jù): .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列的前項和為, .
(1)求數(shù)列的通項公式;
(2)令,設數(shù)列的前項和為,求;
(3)令,若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬中,側(cè)棱底面,且,過棱的中點,作交于點,連接
(Ⅰ)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫
出結(jié)論);若不是,說明理由;
(Ⅱ)若面與面所成二面角的大小為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面ABCD⊥平面ADEF,其中四邊形ABCD為矩形,四邊形ADEF為梯形,AF∥DE,AF⊥EF,AF=AD=2AB=2DE=2.
(1)求證:CE∥面ABF;
(2)求直線DE與平面BDF所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點為棱上一點,若平面,,求實數(shù)的值;
(2)求點B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面,可證,進而證得四邊形為平行四邊形,根據(jù),可得;
(2)利用等體積法可求點到平面的距離.
試題解析:((1)因為平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.
因為,
.
(2)因為 , ,
所以平面,
又因為平面,
所以平面平面,
平面平面,
在平面內(nèi)過點作直線于點,則平面,
在和中,
因為,所以,
又由題知,
所以,
由已知求得,所以,
連接BD,則,
又求得的面積為,
所以由點B 到平面的距離為.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問題:
①根據(jù)以上數(shù)據(jù),設每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,滿足,且、、成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設數(shù)列滿足,求數(shù)列的前項和.
【答案】(1);(2)
【解析】試題分析:(1)設等差數(shù)列 的公差為,由a3=7,且、、成等比數(shù)列.可得,解之得即可得出數(shù)列的通項公式;
2)由(1)得,則,由裂項相消法可求數(shù)列的前項和.
試題解析:(1)設數(shù)列的公差為,且由題意得,
即 ,解得,
所以數(shù)列的通項公式.
(2)由(1)得
,
.
【題型】解答題
【結(jié)束】
18
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點為棱上一點,若平面,,求實數(shù)的值;
(2)求點B到平面SAD的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:
(1)該幾何體的體積.
(2)截面ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com