科目: 來源: 題型:
【題目】設函數(shù)f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函數(shù)
(1)求b、c的值.
(2)求g(x)的單調區(qū)間與極值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={x|f(x)=lg(x﹣1)},集合B={y|y=2x+a,x≤0}.
(1)若a,求A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知平面直角坐標系中,過點的直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線相交于不同的兩點,.
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若,求實數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題為真命題的是( )
A.設命題:,.則:,;
B.若,,則;
C.若是定義在上的減函數(shù),則“”是“”的充要條件;
D.若,,()是全不為0的實數(shù),則“”是“不等式和解集相等”的充分不必要條件.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了緩解日益擁堵的交通狀況,不少城市實施車牌競價策略,以控制車輛數(shù)量.某地車牌競價的基本規(guī)則是:①“盲拍”,即所有參與競拍的人都要網(wǎng)絡報價一次,每個人不知曉其他人的報價,也不知道參與當期競拍的總人數(shù);②競價時間截止后,系統(tǒng)根據(jù)當期車牌配額,按照競拍人的出價從高到低分配名額.某人擬參加年月份的車牌競拍,他為了預測最低成交價,根據(jù)競拍網(wǎng)站的數(shù)據(jù),統(tǒng)計了最近個月參與競拍的人數(shù)(見下表):
月份 | |||||
月份編號 | |||||
競拍人數(shù)(萬人) |
(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型擬合競拍人數(shù)(萬人)與月份編號之間的相關關系.請用最小二乘法求關于的線性回歸方程:,并預測年月份參與競拍的人數(shù).
(2)某市場調研機構從擬參加年月份車牌競拍人員中,隨機抽取了人,對他們的擬報價價格進行了調查,得到如下頻數(shù)分布表和頻率分布直方圖:
報價區(qū)間(萬元) | |||||||
頻數(shù) |
(i)求、的值及這位競拍人員中報價大于萬元的概率;
(ii)若年月份車牌配額數(shù)量為,假設競拍報價在各區(qū)間分布是均勻的,請你根據(jù)以上抽樣的數(shù)據(jù)信息,預測(需說明理由)競拍的最低成交價.
參考公式及數(shù)據(jù):①回歸方程,其中,;
②,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果對定義在R上的函數(shù),對任意兩個不相等的實數(shù)都有
① ② ③ ④以上函數(shù)是“”的所有序號為_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com