相關(guān)習(xí)題
 0  262481  262489  262495  262499  262505  262507  262511  262517  262519  262525  262531  262535  262537  262541  262547  262549  262555  262559  262561  262565  262567  262571  262573  262575  262576  262577  262579  262580  262581  262583  262585  262589  262591  262595  262597  262601  262607  262609  262615  262619  262621  262625  262631  262637  262639  262645  262649  262651  262657  262661  262667  262675  266669 

科目: 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若有相同的單調(diào)區(qū)間,求的取值范圍;

(Ⅱ)令),若在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(i)求的取值范圍;

(ii)設(shè)兩個(gè)極值點(diǎn)分別為, ,證明:

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)y=fx)是定義域?yàn)?/span>R的偶函數(shù).當(dāng)x≥0時(shí),,若關(guān)于x的方程[fx]2+afx+b=0,a,bR有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。

A. B.

C. D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),證明有極小值點(diǎn),且;

)證明

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某企業(yè)欲做一個(gè)介紹企業(yè)發(fā)展史的銘牌,銘牌的截面形狀是如圖所示的扇形環(huán)面(由扇形挖去扇形后構(gòu)成的).已知,線段與弧、的長(zhǎng)度之和為米,圓心角為弧度.

(1)關(guān)于的函數(shù)解析式;

(2)記銘牌的截面面積為,試問取何值時(shí),的值最大?并求出最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的極大值;

)若函數(shù)的極小值大于零,求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

1)若函數(shù),求函數(shù)的極值;

2)討論函數(shù)在定義域內(nèi)極值點(diǎn)的個(gè)數(shù);

3)設(shè)直線為函數(shù)的圖象上一點(diǎn)處的切線,證明:在區(qū)間上存在唯一的,使得直線與曲線相切.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專著,成于公元一世紀(jì)左右,系統(tǒng)總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就.其中《方田》一章中記載了計(jì)算弧田(弧田就是由圓弧和其所對(duì)弦所圍成弓形)的面積所用的經(jīng)驗(yàn)公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)為的弧田.其實(shí)際面積與按照上述經(jīng)驗(yàn)公式計(jì)算出弧田的面積之間的誤差為( )平方米.(其中

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】2020年初,新冠肺炎疫情襲擊全國(guó),某省由于人員流動(dòng)性較大,成為湖北省外疫情最嚴(yán)重的省份之一,截至229日,該省已累計(jì)確診1349例患者(無(wú)境外輸入病例).

1)為了解新冠肺炎的相關(guān)特征,研究人員從該省隨機(jī)抽取100名確診患者,統(tǒng)計(jì)他們的年齡數(shù)據(jù),得下面的頻數(shù)分布表:

年齡

人數(shù)

2

6

12

18

22

22

12

4

2

由頻數(shù)分布表可以大致認(rèn)為,該省新冠肺炎患者的年齡服從正態(tài)分布img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/11/70cd3e4c/SYS202005251112216152234742_ST/SYS202005251112216152234742_ST.011.png" width="80" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,其中近似為這100名患者年齡的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).請(qǐng)估計(jì)該省新冠肺炎患者年齡在70歲以上()的患者比例;

2)截至229日,該省新冠肺炎的密切接觸者(均已接受檢測(cè))中確診患者約占10%,以這些密切接觸者確診的頻率代替1名密切接觸者確診發(fā)生的概率,每名密切接觸者是否確診相互獨(dú)立.現(xiàn)有密切接觸者20人,為檢測(cè)出所有患者,設(shè)計(jì)了如下方案:將這20名密切接觸者隨機(jī)地按20的約數(shù))個(gè)人一組平均分組,并將同組的個(gè)人每人抽取的一半血液混合在一起化驗(yàn),若發(fā)現(xiàn)新冠病毒,則對(duì)該組的個(gè)人抽取的另一半血液逐一化驗(yàn),記個(gè)人中患者的人數(shù)為,以化驗(yàn)次數(shù)的期望值為決策依據(jù),試確定使得20人的化驗(yàn)總次數(shù)最少的的值.

參考數(shù)據(jù):若,則,,,,.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓:的離心率為,圓的圓心與橢圓C的上頂點(diǎn)重合,點(diǎn)P的縱坐標(biāo)為

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)若斜率為2的直線l與橢圓C交于A,B兩點(diǎn),探究:在橢圓C上是否存在一點(diǎn)Q,使得,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某班要從5名男生3名女生中選出5人擔(dān)任5門不同學(xué)科的課代表,請(qǐng)分別求出滿足下列條件的方法種數(shù).

(1)所安排的女生人數(shù)必須少于男生人數(shù);

(2)其中的男生甲必須是課代表,但又不能擔(dān)任數(shù)學(xué)課代表;

(3)女生乙必須擔(dān)任語(yǔ)文課代表,且男生甲必須擔(dān)任課代表,但又不能擔(dān)任數(shù)學(xué)課代表.

查看答案和解析>>

同步練習(xí)冊(cè)答案