科目: 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數學家趙爽在《周髀算經》中注釋了其理論證明,其基本思想是圖形經過割補后面積不變.即通過如圖所示的“弦圖”,將勻股定理表述為:“勾股各自乘,并之,為弦實,開方除之,即弦”(其中分別為勾股弦);證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實”,即,化簡得.現已知,,向外圍大正方形區(qū)域內隨機地投擲一枚飛鏢,飛鏢落在中間小正方形內的概率是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是某電視臺主辦的歌手大獎賽上七位評委為甲、乙兩名選手打出的分數的莖葉圖(其中為數字0~9中的一個),則下列結論中正確的是( )
A. 甲選手的平均分有可能和乙選手的平均分相等
B. 甲選手的平均分有可能比乙選手的平均分高
C. 甲選手所有得分的中位數比乙選手所有得分的中位數低
D. 甲選手所有得分的眾數比乙選手所有得分的眾數高
查看答案和解析>>
科目: 來源: 題型:
【題目】某同學將收集到的六組數據制作成散點圖如圖所示,并得到其回歸直線的方程為,計算其相關系數為,相關指數為.經過分析確定點F為“離群點”,把它去掉后,再利用剩下的5組數據計算得到回歸直線的方程為,相關系數為,相關指數為.以下結論中,不正確的是( )
A.>B.>0,>0C.=0.12D.0<<0.68
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的方程為,曲線:(為參數,),在以原點為極點,軸正半軸為極軸的極坐標系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線有公共點,且直線與曲線的交點恰好在曲線與軸圍成的區(qū)域(不含邊界)內,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】“吸煙有害健康,吸煙會對身體造成傷害”,哈爾濱市于2012年5月31日規(guī)定室內場所禁止吸煙.美國癌癥協(xié)會研究表明,開始吸煙年齡X分別為16歲、18歲、20歲和22歲者,其得肺癌的相對危險度Y依次為15.10,12.81,9.72,3.21;每天吸煙支數U分別為10,20,30者,其得肺癌的相對危險度V分別為7.5,9.5和16.6,用表示變量X與Y之間的線性相關系數,用r2表示變量U與V之間的線性相關系數,則下列說法正確的是( )
A.r1=r2B.r1>r2>0
C.0<r1<r2D.r1<0<r2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.
(1)求橢圓的標準方程;
(2)若不經過點的直線:與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產100件產品,且每生產1件正品可獲利20元,生產1件次品損失30元,甲、乙兩名工人100天中出現次品件數的情況如表所示.
甲每天生產的次品數/件 | 0 | 1 | 2 | 3 | 4 |
對應的天數/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產的次品數/件 | 0 | 1 | 2 | 3 |
對應的天數/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產的次品數記為(單位:件),日利潤記為(單位:元),寫出與的函數關系式;
(2)按這100天統(tǒng)計的數據,分別求甲、乙兩名工人的平均日利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產業(yè)中的一個支柱產業(yè),一直在社會發(fā)展與人民生活中發(fā)揮著重要作用.某機構統(tǒng)計了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結論中不正確的是( )
A. 2010~2016年全國餐飲收入逐年增加
B. 2016年全國餐飲收入比2010年翻了一番以上
C. 2010~2016年全國餐飲收入同比增量最多的是2015年
D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函數
(1)求b、c的值.
(2)求g(x)的單調區(qū)間與極值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線C頂點在坐標原點,焦點F在Y軸的非負半軸上,點是拋物線上的一點.
(1)求拋物線C的標準方程
(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com