相關(guān)習(xí)題
 0  263249  263257  263263  263267  263273  263275  263279  263285  263287  263293  263299  263303  263305  263309  263315  263317  263323  263327  263329  263333  263335  263339  263341  263343  263344  263345  263347  263348  263349  263351  263353  263357  263359  263363  263365  263369  263375  263377  263383  263387  263389  263393  263399  263405  263407  263413  263417  263419  263425  263429  263435  263443  266669 

科目: 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,直線l過點(diǎn)

1)若點(diǎn)F到直線l的距離為,求直線l的斜率;

2)設(shè)AB為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過點(diǎn)M,求證:線段AB中點(diǎn)的橫坐標(biāo)為定值

查看答案和解析>>

科目: 來源: 題型:

【題目】從一批草莓中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:

分組(重量)

須數(shù)(個(gè))

10

5

20

15

1)根據(jù)頻數(shù)分布表計(jì)算草莓的重量在的頻率;

2)用分層抽樣的方法從重量在的草莓中共抽取5個(gè),其中重量在的有幾個(gè)?

3)從(2)中抽出的5個(gè)草莓中任取2個(gè),求重量在中各有1個(gè)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)有10件產(chǎn)品中有3件次品,7件正品,從中抽取5用數(shù)字表示

1)沒有次品的抽法有多少種?

2)有2件次品的抽法有多少種?

3)至少1件次品的抽法有多少種?

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)有10名教師,其中男教師6名,女教師4名.

1)現(xiàn)要從中選2名去參加會(huì)議,有多少種不同的選法?

2)選出2名男教師或2名女教師去外地學(xué)習(xí)的選法有多少種?

3)現(xiàn)要從中選出男、女老師各2名去參加會(huì)議,有多少種不同的選法?

查看答案和解析>>

科目: 來源: 題型:

【題目】田忌賽馬是史記中記載的一個(gè)故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個(gè)必勝策略:比賽即將開始時(shí),他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注假設(shè)田忌的各等級馬與某公子的各等級馬進(jìn)行一場比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】關(guān)于的說法,正確的是(

A.展開式中的二項(xiàng)式系數(shù)之和為1024B.展開式中第6項(xiàng)的二項(xiàng)式系數(shù)最大

C.展開式中第5項(xiàng)和第7項(xiàng)的二項(xiàng)式系數(shù)最大D.展開式中第6項(xiàng)的系數(shù)最小

查看答案和解析>>

科目: 來源: 題型:

【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計(jì)算機(jī)年,萊布尼茨改進(jìn)了帕斯卡的計(jì)算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運(yùn)算在計(jì)算機(jī)上實(shí)現(xiàn)起來過于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念之后,人們對進(jìn)位制的效率問題進(jìn)行了深入的研究研究方法如下:對于正整數(shù),我們準(zhǔn)備張不同的卡片,其中寫有數(shù)字0,1,…,的卡片各有如果用這些卡片表示進(jìn)制數(shù),通過不同的卡片組合,這些卡片可以表示個(gè)不同的整數(shù)例如,時(shí),我們可以表示出個(gè)不同的整數(shù)假設(shè)卡片的總數(shù)為一個(gè)定值,那么進(jìn)制的效率最高則意味著張卡片所表示的不同整數(shù)的個(gè)數(shù)最大根據(jù)上述研究方法,幾進(jìn)制的效率最高?  

A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費(fèi)金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進(jìn)行了問卷調(diào)査.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購消費(fèi)金額均在區(qū)間內(nèi),按,,,分成6組,其頻率分布直方圖如圖所示.

(1)估計(jì)該社區(qū)居民最近一年來網(wǎng)購消費(fèi)金額的中位數(shù);

(2)將網(wǎng)購消費(fèi)金額在20千元以上者稱為“網(wǎng)購迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購迷與性別有關(guān)系”;

合計(jì)

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計(jì)

100

(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨(dú)立,兩人網(wǎng)購時(shí)間與次數(shù)也互不. 影響.統(tǒng)計(jì)最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.

附:觀測值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在邊長為的菱形中,,現(xiàn)沿對角線翻折到的位置得到四面體,如圖所示.已知.

1)求證:平面平面

2)若是線段上的點(diǎn),且,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案