科目: 來源: 題型:
【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽A隊選手獲勝的概率均為,且各局比賽結果相互獨立,比賽結束時A隊的得分高于B隊的得分的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知可以用一系列半徑為且彼此不重疊的圓盤覆蓋平面上的所有格點(在平面直角坐標系中,橫、縱坐標都是整數(shù)的點為格點),則______4 (填“大于~小于”或“等于”).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),,以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】市某機構為了調查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調查,調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據已知數(shù)據,把表格數(shù)據填寫完整;
(2)利用(1)完成的表格數(shù)據回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關;
(ii)已知在被調查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機抽取人,求至多有位老師的概率.
附:,其中.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知若橢圓:()交軸于,兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,,則為定值.
(1)若將雙曲線與橢圓類比,試寫出類比得到的命題;
(2)判定(1)類比得到命題的真假,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】祖暅是我國古代的偉大科學家,他在5世紀末提出祖暅:“冪勢即同,則積不容異”,意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意一個平面所截,若截面面積都相等,則這兩個幾何體的體積相等. 祖暅原理常用來由已知幾何體的體積推導未知幾何體的體積,例如由圓錐和圓柱的的體積推導半球體的體積,其示意圖如圖所示,其中圖(1)是一個半徑為R的半球體,圖(2)是從圓柱中挖去一個圓錐所得到的幾何體. (圓柱和圓錐的底面半徑和高均為R)
利用類似的方法,可以計算拋物體的體積:在x-O-y坐標系中,設拋物線C的方程為y=1-x2 (-1x1),將曲線C圍繞y軸旋轉,得到的旋轉體稱為拋物體. 利用祖暅原理可計算得該拋物體的體積為_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,點A為曲線上的動點,點B在線段OA的延長線上,且滿足,點B的軌跡為.
(1)求,的極坐標方程;
(2)設點C的極坐標為(2,0),求△ABC面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com