科目: 來源: 題型:
【題目】設(shè)函數(shù)
(1)若是函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),對(duì)于任意的(為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若上恰有2個(gè)點(diǎn)到的距離等于,求的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年2月13日《西安市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù);
(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會(huì).
(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說明理由;
(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類專業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類專業(yè)”有關(guān)?(精確到0.1)
閱讀時(shí)間不足8.5小時(shí) | 閱讀時(shí)間超過8.5小時(shí) | |
理工類專業(yè) | 40 | 60 |
非理工類專業(yè) |
附:().
臨界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),為橢圓的上焦點(diǎn),上一點(diǎn)在軸上方,且.
(1)求直線的方程;
(2)為直線與異于的交點(diǎn),的弦,的中點(diǎn)分別為,若在同一直線上,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取100件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指數(shù)并繪制頻率分布直方圖(如圖1):
產(chǎn)品的質(zhì)量指數(shù)在的為三等品,在的為二等品,在的為一等品,該產(chǎn)品的三、二、一等品的銷售利潤(rùn)分別為每件1.5,3.5,5.5(單位:元),以這100件產(chǎn)品的質(zhì)量指數(shù)位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指數(shù)位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤(rùn);
(2)該公司為了解年?duì)I銷費(fèi)用(單位:萬元)對(duì)年銷售量(單位:萬件)的影響,對(duì)近5年的年?duì)I銷費(fèi)用和年銷售量 數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.
16.30 | 24.87 | 0.41 | 1.64 |
表中,,,
根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬件)關(guān)于年?duì)I銷費(fèi)用(萬元)的回歸方程.
(。┙關(guān)于的回歸方程;
(ⅱ)用所求的回歸方程估計(jì)該公司應(yīng)投入多少營(yíng)銷費(fèi),才能使得該產(chǎn)品一年的收益達(dá)到最大?(收益=銷售利潤(rùn)-營(yíng)銷費(fèi)用,取)
參考公式:對(duì)于一組數(shù)據(jù):,,,,其回歸直線的斜率和截距的最小乘估計(jì)分別為,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上,點(diǎn)滿足以為直徑的圓過橢圓的上頂點(diǎn).
(1)求橢圓的方程;
(2)已知直線過右焦點(diǎn)與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得為定值?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),.
(1)當(dāng)時(shí),求函數(shù)的極小值;
(2)若當(dāng)時(shí),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且為等腰直角三角形,,為的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成線面角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com